[1]CHEN Guihui,HE Long,LI Zhongbing,et al.Chip resistance recognition based on convolution neural network[J].CAAI Transactions on Intelligent Systems,2019,14(2):263-272.[doi:10.11992/tis.201710005]
Copy

Chip resistance recognition based on convolution neural network

References:
[1] GIUNCHIGLIA F, YATSKEVICH M. Element level semantic matching. Technical Report DIT-04-035[R]. Trento, Italy:Information Engineering and Computer Science, 2004.
[2] OMACHI M, OMACHI S. Fast two-dimensional template matching with fixed aspect ratio based on polynomial approximation[C]//Proceedings of the 9th International Conference on Signal Processing. Beijing, China, 2008:757-760.
[3] JOLLIFFE I T. Principal component analysis[M]. New York, USA:Springer-Verlag, 1986.
[4] ZHANG Xingfu, REN Xiangmin. Two dimensional principal component analysis based independent component analysis for face recognition[C]//Proceedings of 2011 International Conference on Multimedia Technology. Hangzhou, China, 2011:934-936.
[5] PELLEGRINO F A, VANZELLA W, TORRE V. Edge detection revisited[J]. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 2004, 34(3):1500-1518.
[6] DUCOTTET C, FOURNEL T, BARAT C. Scale-adaptive detection and local characterization of edges based on wavelet transform[J]. Signal processing, 2004, 84(11):2115-2137.
[7] SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing[J]. International journal of computer vision, 1997, 23(1):45-78.
[8] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3):273-297.
[9] GUO H, GELFAND S B. Classification trees with neural network feature extraction[J]. IEEE transactions on neural networks, 1992, 3(6):923-33.
[10] GOLDSZMIDT M. Bayesian network classifiers[J]. Machine learning, 2011, 29(2/3):598-605.
[11] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(8):1697-1717 JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese journal of computers, 2016, 39(8):1697-1717
[12] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[13] ERHAN D, MANZAGOL P A, BENGIO Y, et al. The difficulty of training deep architectures and the effect of unsupervised pre-training[C]//Appearing in Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Florida, USA, 2009:153-160.
[14] LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series[M]//ARBIB M A. The Handbook of Brain Theory and Neural Networks. Cambridge, MA, USA:MIT Press, 1998.
[15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Montreal, Canada, 2012:1097-1105.
[16] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2014:1-9.
[17] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[J]. arXiv:1602.07261, 2016.
[18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016:770-778.
[19] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015:448-456.
[20] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, FL, USA, 2011:315-323.
Similar References:

Memo

-

Last Update: 2019-04-25

Copyright © CAAI Transactions on Intelligent Systems