[1]WEI Caifeng,SUN Yongcong,ZENG Xianhua.Dictionary pair learning with graph regularization for mild cognitive impairment prediction[J].CAAI Transactions on Intelligent Systems,2019,14(2):369-377.[doi:10.11992/tis.201709033]
Copy

Dictionary pair learning with graph regularization for mild cognitive impairment prediction

References:
[1] 邵冬华, 施志刚, 史军杰. 二次近邻稀疏重构法及人脸识别[J]. 重庆邮电大学学报(自然科学版), 2017, 29(6):844-850 SHAO Donghua, SHI Zhigang, SHI Junjie. Sparse reconstruction algorithm based on secondary nearest neighbor and face recognition[J]. Journal of Chongqing university of posts and telecommunications (natural science edition), 2017, 29(6):844-850
[2] 王佐成, 杨娟, 薛丽霞. 基于二进神经网络的稀疏编码架构的图像无损压缩新方法[J]. 重庆邮电大学学报(自然科学版), 2017, 29(3):371-376 WANG Zuocheng, YANG Juan, XUE Lixia. A novel lossless image compression scheme based on binary neural networks with sparse coding[J]. Journal of Chongqing University of Posts and Telecommunications (natural science edition), 2017, 29(3):371-376
[3] WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6):1031-1044.
[4] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(2):210-227.
[5] AHARON M, ELAD M, BRUCKSTEIN A. rmK-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE transactions on signal processing, 2006, 54(11):4311-4322.
[6] YANG Meng, ZHANG Lei, FENG Xiangchu, et al. Fisher discrimination dictionary learning for sparse representation[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain, 2011:543-550.
[7] JIANG Zhuolin, LIN Zhe, DAVIS L S. Label consistent K-SVD:learning a discriminative dictionary for recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(11):2651-2664.
[8] LU Jiwen, WANG Gang, DENG Weihong, et al. Simultaneous feature and dictionary learning for image set based face recognition[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014:265-280.
[9] YANG Yang, HUANG Zi, YANG Yi, et al. Local image tagging via graph regularized joint group sparsity[J]. Pattern recognition, 2013, 46(5):1358-1368.
[10] GU Shuhang, ZHANG Lei, ZUO Wangmeng, et al. Projective dictionary pair learning for pattern classification[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:793-801.
[11] CUINGNET R, GERARDIN E, TESSIERAS J, et al. Automatic classification of patients with Alzheimer’s disease from structural MRI:a comparison of ten methods using the ADNI database[J]. NeuroImage, 2011, 56(2):766-781.
[12] CHEN Yefei, SU Jianbo. Sparse embedded dictionary learning on face recognition[J]. Pattern recognition, 2017, 64:51-59.
[13] MAIRAL J, BACH F, PONCE J, et al. Supervised dictionary learning[J]. Paris:INRIA, 2008:1-8.
[14] TONG Tong, GAO Qinquan, GUERRERO R, et al. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer’s disease[J]. IEEE transactions on biomedical engineering, 2017, 64(1):155-165.
[15] WYMAN B T, HARVEY D J, CRAWFORD K, et al. Standardization of analysis sets for reporting results from ADNI MRI data[J]. Alzheimer’s & dementia, 2013, 9(3):332-337.
[16] MORADI E, PEPE A, GASER C, et al. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects[J]. NeuroImage, 2015, 104:398-412.
[17] JANOU?OVá E, VOUNOU M, WOLZ R, et al. Biomarker discovery for sparse classification of brain images in Alzheimer’s disease[J]. Annals of the BMVA, 2012, 2012(2):1-11.
Similar References:

Memo

-

Last Update: 2019-04-25

Copyright © CAAI Transactions on Intelligent Systems