[1]LI Hang,WANG Jin,ZHAO Rui.Multi-label hypernetwork ensemble learning based on Spark[J].CAAI Transactions on Intelligent Systems,2017,12(5):624-639.[doi:10.11992/tis.201706033]
Copy

Multi-label hypernetwork ensemble learning based on Spark

References:
[1] GAO S, WU W, LEE C H, et al. A MFoM learning approach to robust multiclass multi-label text categorization[C]//Proceedings of the 21st International Conference on Machine Learning. Canada:ACM Press, 2004:42.
[2] JIANG J Y, TSAI S C, LEE S J. FSKNN:multi-label text categorization based on fuzzy similarity and k nearest neighbors[J]. Expert systems with applications, 2012, 39(3):2813-2821.
[3] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification ☆[J]. Pattern recognition, 2004, 37(9):1757-1771.
[4] QI G J, HUA X S, RUI Y, et al. Correlative multi-label video annotation[C]//In Proceedings of the 15th ACM International Conference on Multimedia. Germany:ACM Press, 2007:17-26.
[5] CESA-BIANCHI N, RE M, VALENTINI G. Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference[J]. Machine learning, 2012, 88(1):209-241.
[6] ZHANG M L, ZHANG K. Multi-label learning by exploiting label dependency[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. USA:ACM Press, 2010:999-1008.
[7] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Mining multi-label data[M]. New York:Springer US, 2009:667-685.
[8] FüRNKRANZ J, HüLLERMEIER E, MENCíA E L, et al. Multilabel classification via calibrated label ranking[J]. Machine Learning, 2008, 73(2):133-153.
[9] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random k-Labelsets for Multilabel Classification[J].IEEE transactions on knowledge & data engineering, 2010, 23(7):1079-1089.
[10] LO H Y, LIN S D, WANG H M. Generalized k-labelsets ensemble for multi-label and cost-sensitive classification[J]. Knowledge & data engineering IEEE transactions on, 2014, 26(7):1679-1691.
[11] HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE transactions on knowledge and data engineering, 2009, 21(9):1263-1284.
[12] XIOUFIS E S, SPILIOPOULOU M, TSOUMAKAS G, et al. Dealing with concept drift and class imbalance in multi-label stream classification[C]//IJCAI 2011 Proceedings of the International Joint Conference on Artificial Intelligence. Barcelona, Spain, 2011:1583-1588.
[13] CHARTE F, RIVERA A, del JESUS M J, et al. A first approach to deal with imbalance in multi-label datasets[C]//In Proceedings of the International Conference on Hybrid Artificial Intelligence Systems. Springer Berlin Heidelberg, USA, 2013:150-160.
[14] ZHANG M L, LI Y K, LIU X Y. Towards class-imbalance aware multi-label learning[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Argentina:AAAI Press, 2015:4041-4047.
[15] LIU H, LI X, ZHANG S. Learning instance correlation functions for multilabel classification[J]. IEEE transactions on cybernetics, 2017, 47(2):499-510.
[16] ZHANG M L, WU L. Lift:multi-label learning with label[J]. Pattern analysis & machine intelligence IEEE transactions on, 2015, 37(1):107-20.
[17] ALALI A, KUBAT M. PruDent:A pruned and confident stacking approach for multi-label classification[J]. IEEE transactions on knowledge & data engineering, 2015, 27(9):1-1.
[18] WU Q, TAN M, Song H, et al. ML-forest:a multi-label tree ensemble method for multi-label classification[J]. IEEE transactions on knowledge and data engineering, 2016, 28(10):1-1.
[19] HUANG J, LI G, HUANG Q, et al. Learning label-specific features and class-dependent labels for multi-label classification[J].IEEE transactions on knowledge and data engineering, 2016, 28(12):3309-3323.
[20] WU Q, YE Y, ZHANG H, et al. ML-Tree:a tree-structure-based approach to multilabel learning.[J]. IEEE trans neural netw learn syst, 2014, 26(3):430-443.
[21] CHARTE F. LI-MLC:A Label Inference Methodology for Addressing High Dimensionality in the Label Space for Multilabel Classification[J]. IEEE trans. neural networks and learning systems, 2014, 25(10):1842-1854.
[22] MONTA?ES E, SENGE R, BARRANQUERO J, et al. Dependent binary relevance models for multi-label classification[J]. Pattern recognition, 2014, 47(3):1494-1508.
[23] LO H Y, LIN S D, WANG H M. Generalized k-labelsets ensemble for multi-label and cost-sensitive classification[J]. Knowledge and data engineering IEEE transactions on, 2014, 26(7):1679-1691.
[24] SUN K W, LEE C H, WANG J. Multilabel classification via co-evolutionary multilabel hypernetwork[J]. IEEE transactions on knowledge and data engineering, 2016, 28(9):1-1.
[25] LO H Y, WANG J C, WANG H M, et al. Cost-sensitive multi-label learning for audio tag annotation and retrieval[J]. IEEE transactions on multimedia, 2011, 13(3):518-529.
[26] OZONAT K, YOUNG D. Towards a universal marketplace over the web:statistical multi-label classification of service provider forms with simulated annealing[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009:1295-1304.
[27] ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and dada engineering, 2014, 26(8):1819-1837.
[28] ZHANG M L, ZHANG K. Multi-label learning by exploiting label dependency[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. USA:ACM Press, 2010:999-1008.
[29] ZHANG M L, ZHOU Z H. ML-KNN:A lazy learning approach to multi-label learning[J]. Pattern recognition, 2007, 40(7):2038-2048.
[30] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern recognition, 2004, 37(9):1757-1771.
[31] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//In NIPS’01 Proceedings of the 14th International Conference on Neural Information Processing Systems:Natural and Synthetic. Vancouver, British Columbia, Canada:MIT Press, 2001:681-687.
[32] ZHANG M L, ZHOU Z H. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE transactions on knowledge and data engineering, 2006, 18(10):1338-1351.
[33] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine learning, 2011, 85(3):254-269.
[34] YI L, RONG J, LIU Y. Semi-supervised Multi-label Learning by Constrained Non-negative Matrix Factorization.[C]//In AAAI’06 Proceedings of the 21st national conference on Artificial intelligence. Boston:AAAI Press,2006:421-426.
[35] LIU X Y, LI Q Q, ZHOU Z H. Learning imbalanced multi-class data with optimal dichotomy weights[C]//Proceedings of the 2013 IEEE 13th International Conference on Data Mining. USA:IEEE Press, 2013:478-487.
[36] TAHIR M A, KITTLER J, MIKOLAJCZYK K, et al. Improving multilabel classification performance by using ensemble of multi-label classifiers[C]//Proceedings of the International Workshop on Multiple Classifier Systems. Egypt:Springer Berlin Heidelberg, 2010:11-21.
[37] DEAN J, GHEMAWAT S. MapReduce:Simplified data processing on large clusters[C]//In OSDI’04 Proceedings of the 6th conference on Symposium on Opearting Systems Design & Implementation. Berkeley, USA, 2004:10-10.
[38] ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark:cluster computing with working sets[C]//In HotCloud’10 Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley, USA, 2010:10-10.
[39] MIKA P. Flink:semantic web technology for the extraction and analysis of social networks[J]. Web semantics science services and agents on the world Wide Web, 2005, 3(2/3):211-223.
[40] BU Y, HOWE B, BALAZINSKA M, et al. HaLoop:efficient iterative data processing on large clusters[J]. Proceedings of the Vldb endowment, 2010, 3(1/2):285-296.
[41] ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computing[C]//In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. San Jose:USENIX Association, 2012:2.
[42] VESANTO J, ALHONIEMI E. Clustering of the self-organizing map[J]. IEEE transactions on neural networks, 2000, 11(3):586-600.
[43] LEE S J, JIANG J Y. Multilabel text categorization based on fuzzy relevance clustering[J]. IEEE transactions on fuzzy systems, 2014, 22(6):1457-1471.
[44] CHENG W, HüLLERMEIER E. Combining instance-based learning and logistic regression for multilabel classification[J]. Machine learning, 2009, 76(2):211-225.
Similar References:

Memo

-

Last Update: 2017-10-25

Copyright © CAAI Transactions on Intelligent Systems