[1]XIE Juanying,ZHOU Ying,WANG Mingzhao,et al.New criteria for evaluating the validity of clustering[J].CAAI Transactions on Intelligent Systems,2017,12(6):873-882.[doi:10.11992/tis.201706029]
Copy

New criteria for evaluating the validity of clustering

References:
[1] ESTEVA A, KUPREL B, NOVOA RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
[2] FARINA D, VUJAKLIJA I, SARTORI M, et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation[J]. Nature biomedical engineering, 2017, 1: 25.
[3] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
[4] LONG E, LIN H, LIU Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[J]. Nature biomedical engineering, 2017, 1: 0024.
[5] ORRINGER DA, PANDIAN B, NIKNAFS Y S, et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nature biomedical engineering, 2017, 1: 0027.
[6] HAN J, PEI J, KAMBER M. Data mining: concepts and techniques[M]. Singapore: Elsevier, 2011.
[7] JAIN AK, DUBES RC. Algorithms for clustering data[M]. Prentice-Hall, 1988.
[8] DE SOUTO MCP, COELHO ALV, FACELI K, et al. A comparison of external clustering evaluation indices in the context of imbalanced data sets[C]//2012 Brazilian Symposium on Neural Networks (SBRN). [S.l.], 2012: 49-54.
[9] HUANG S, CHRNG Y, LANG D, et al. A formal algorithm for verifying the validity of clustering results based on model checking[J]. PloS one, 2014, 9(3): e90109.
[10] RENDóN E, ABUNDEZ I, ARIZMENDI A, et al. Internal versus external cluster validation indexes[J]. International journal of computers and communications, 2011, 5(1): 27-34.
[11] ROSALES-MENDéZ H, RAMíREZ-CRUZ Y. CICE-BCubed: A new evaluation measure for overlapping clustering algorithms[C]//Iberoamerican Congress on Pattern Recognition. Berlin: Springer Berlin Heidelberg, 2013: 157-164.
[12] SAID AB, HADJIDJ R, FOUFOU S. Cluster validity index based on jeffrey divergence[J]. Pattern analysis and applications, 2017, 20(1): 21-31.
[13] XIONG H, WU J, CHEN J. K-means clustering versus validation measures: a data-distribution perspective[J]. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 2009, 39(2): 318-331.
[14] POWERS D M W. Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation[J]. Journal of machine learning technologies, 2011, 2: 2229-3981.
[15] LARSEN B, AONE C. Fast and effective text mining using linear-time document clustering[C]//Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. New York, USA: ACM, 1999: 16-22.
[16] ZU EISSEN, B S S M, WI?BROCK F. On cluster validity and the information need of users[C]//Conference on Artificial Intelligence and Applications, Benalmádena, Spain, 2003. Calgary, Canada: ACTA Press, 2003: 216-221.
[17] 谢娟英. 无监督学习方法及其应用[M]. 北京: 电子工业出版社, 2016.
XIE Juanying, Unsupervised learning methods and applications[M]. Beijing: Publishing House of Electronics Industry, 2016.
[18] XIE J Y, GAO H C, XIE W X, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information sciences, 2016, 354: 19-40.
[19] 谢娟英, 高红超, 谢维信. K 近邻优化的密度峰值快速搜索聚类算法[J]. 中国科学: 信息科学, 2016, 46(2): 258-280.
XIE Juanying, GAO Hongchao, XIE Weixin. K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset[J]. Scientia sinica informationis, 2016, 46(2): 258-280.
[20] AMIGó E, GONZALO J, ARTILES J, et al. A comparison of extrinsic clustering evaluation metrics based on formal constraints[J]. Information retrieval, 2009, 12(4): 461-486.
[21] VINH NX, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: is a correction for chance necessary [C]//Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Canada, 2009. New York, USA: ACM, 2009: 1073-1080.
[22] D’HAESELEER P. How does gene expression clustering work [J]. Nature biotechnology, 2005, 23(12): 1499.
[23] QUACKENBUSH J. Computational analysis of microarray data[J]. Nature reviews genetics, 2001, 2(6): 418-427.
[24] CHOU CH, SU MC, LAI E. A new cluster validity measure for clusters with different densities[C]//IASTED International Conference on Intelligent Systems and Control. Calgary, Canada: ACTA Press, 2003: 276-281.
[25] 谢娟英, 周颖. 一种新聚类评价指标[J].陕西师范大学学报: 自然科学版, 2015, 43(6): 1-8.
XIE Juanying, ZHOU Ying. A new criterion for clustering algorithm[J]. Journal of Shaanxi normal university: natural science edition, 2015, 43(6): 1-8.
[26] KAPP AV, TIBSHIRANI R. Are clusters found in one dataset present in another dataset[J]. Biostatistics, 2007, 8(1): 9-31.
[27] DAVIES DL, BOULDIN DW. A cluster separation measure[J]. IEEE transactions on pattern analysis and machine intelligence, 1979 (2): 224-227.
[28] HASHIMOTO W, NAKAMURA T, MIYAMOTO S. Comparison and evaluation of different cluster validity measures including their kernelization[J]. Journal of advanced computational intelligence and intelligent informatics, 2009, 13(3): 204-209.
[29] XIE XL, BENI G. A validity measure for fuzzy clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 1991, 13(8): 841-847.
[30] ROUSSEEUW PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of computational and applied mathematics, 1987, 20: 53-65.
[31] 周世兵, 徐振源, 唐旭清. 一种基于近邻传播算法的最佳聚类数确定方法[J]. 控制与决策, 2011, 26(8): 1147-1152.
ZHOU Shibing, XU Zhenyuan, TANG Xuqing. Method for determining optimal number of clusters based on affinity propagation clustering[J]. Control and decision, 2011, 26(8): 1147-1152.
[32] 盛骤, 谢式千. 概率论与数理统计及其应用[M]. 北京: 高等教育出版社, 2004.
SHENG Zhou, XIE Shiqian. Probability and mathematical statistics and its application[M]. Beijing: Higher education press, 2004.
[33] LICHMAN M, UCI Machine learning repository[EB/OL]. 2013, University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml.
[34] 谢娟英, 高瑞. 方差优化初始中心的K-medoids聚类算法[J]. 计算机科学与探索, 2015, 9(8): 973-984.
XIE Juanying, GAO Rui. K-medoids clustering algorithms with optimized initial seeds by variance[J]. Journal of frontiers of computer science and technology, 2015, 9(8): 973-984.
[35] PARK HS, JUN CH. A simple and fast algorithm for K-medoids clustering[J]. Expert systems with applications, 2009, 36(2): 3336-3341.
Similar References:

Memo

-

Last Update: 2018-01-03

Copyright © CAAI Transactions on Intelligent Systems