[1]WU Zhongqiang,ZHANG Yaowen,SHANG Lin.Multi-view sentiment classification of microblogs based on semantic features[J].CAAI Transactions on Intelligent Systems,2017,12(5):745-751.[doi:10.11992/tis.201706026]
Copy

Multi-view sentiment classification of microblogs based on semantic features

References:
[1] LIU B. Sentiment analysis and opinion mining[J]. Synthesis lectures on human language technologies, 2012, 5(1):1-167.
[2] PANG T B, PANG B, LEE L. Thumbs up? Sentiment classification using machine learning[J].Proceedings of EMNLP, 2002:79-86.
[3] T?CKSTR?M O, MCDONALD R. Semi-supervised latent variable models for sentence-level sentiment analysis[C]//The 49th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA, 2011:569-574.
[4] QIU G, LIU B, BU J, et al. Opinion word expansion and target extraction through double propagation[J]. Computational linguistics, 2011, 37(1):9-27.
[5] WU Y, ZAHNG Q, HUANG X, et al. Phrase Dependency Parsing for Opinion Mining[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA, 2009:1533-1541.
[6] LIU Y, HUANG X, AN A, et al. ARSA:a sentiment-aware model for predicting sales performance using blogs[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA, 2007:607-614.
[7] MISHNE G, GLANCE N S. Predicting movie sales from blogger sentiment[C]//National Conference on Artificial Intelligence. Menlo Park, USA, 2006:155-158.
[8] O’CONNOR B, BALASUBRAMANYAN R, ROUTLEDGE B R, et al. From tweets to polls:linking text sentiment to public opinion time series[C]//Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media. Menlo Park, USA, 2010:122-129.
[9] CHIANG H C, MOSES R L, POTTER L C. Model-based Bayesian feature matching with application to synthetic aperture radar target recognition[J]. Pattern recognition, 2001, 34(8):1539-1553.
[10] MCCULLOUGH C L. Feature and data-level fusion of infrared and visual images[J]. Proceedings of SPIE-the international society for optical engineering, 1999, 3719:312-318.
[11] YANG J, YANG J Y, ZHANG D, et al. Feature fusion:parallel strategy vs. serial strategy[J]. Pattern recognition, 2003, 36(6):1369-1381.
[12] SALTON G, WONG A, YANG C S. A vector space model for automatic indexing[M]. New York:ACM, 1975:613-620.
[13] DEERWESTER S, DUMAIS S T, FURNAS G W. Indexing by latent semantic analysis[J]. Journal of the american society for information science, 1990, 41:391-407.
[14] REHDER B, SCHREINER M E, WOLFE M B W, et al. Using latent semantic analysis to assess knowledge:some technical considerations[J]. Discourse processes, 1998, 25(2/3):337-354.
[15] GOLUB G H, REINSCH C. Singular value decomposition and least squares solutions[J]. Numerische mathematik,1970, 14(5):403-420.
[16] WANG F, PENG J, LI Y. Hypergraph based feature fusion for 3-D object retrieval[J]. Neurocomputing, 2015, 151:612-619.
[17] FARQUHAR J D R, HARDOON D R, MENG H, et al. Two view learning:SVM-2K, theory and practice[C]//International Conference on Neural Information Processing Systems. Stroud sburg, USA, 2005:355-362.
[18] ZHANG H P, YU H K, XIONG D Y, et al. HHMM-based Chinese lexical analyzer ICTCLAS[C]//Proceedings of the second SIGHAN workshop on Chinese language Processing-Volume 17. Stroudsburg, USA, 2003:758-759.
[19] TAN S, ZHANG J. An empirical study of sentiment analysis for chinese documents[J]. Expert systems with applications, 2008, 34(4):2622-2629.
[20] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[21] ZHAO W X, JIANG J, WENG J, et al. Comparing twitter and traditional media using topic models[J]. Lecture notes in computer science, 2011, 6611:338-349.
[22] YAN X, GUO J, LAN Y, et al. A biterm topic model for short texts[C]//Proceedings of the 22nd international conference on World Wide Web. New York, USA, 2013:1445-1456.
Similar References:

Memo

-

Last Update: 2017-10-25

Copyright © CAAI Transactions on Intelligent Systems