[1]WANG Liguo,ZHAO Liang,SHI Yao.Maximin distance algorithm-based band selection for hyperspectral imagery[J].CAAI Transactions on Intelligent Systems,2018,13(1):131-137.[doi:10.11992/tis.201703023]
Copy

Maximin distance algorithm-based band selection for hyperspectral imagery

References:
[1] AGARWAL A, EL-GHAZAWI T, EL-ASKARY H, et al. Efficient hierarchical-PCA dimension reduction for hyperspectral imagery[C]//Proceedings of 2007 IEEE International Symposium on Signal Processing and Information Technology. Giza, Egypt, 2007: 353-356.
[2] WANG Jing, CHANG C I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis[J]. IEEE transactions on geoscience and remote sensing, 2006, 44(6): 1586-1600.
[3] LI Wei, PRASAD S, FOWLER J E, et al. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis[J]. IEEE transactions on geoscience and remote sensing, 2012, 50(4): 1185-1198.
[4] 刘雪松, 葛亮, 王斌, 等. 基于最大信息量的高光谱遥感图像无监督波段选择方法[J]. 红外与毫米波学报, 2012, 31(2): 166-170, 176.
LIU Xuesong, GE Liang, WANG Bin, et al. An unsupervised band selection algorithm for hyperspectral imagery based on maximal information[J]. Journal of infrared and millimeter waves, 2012, 31(2): 166-170, 176.
[5] FENG Jie, JIAO L C, ZHANG Xiangrong, et al. Hyperspectral band selection based on trivariate mutual information and clonal selection[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(7): 4092-4105.
[6] 王立国, 邓禄群, 张晶. 改进的SGA端元选择的快速方法[J]. 应用科技, 2010, 37(4), 19-22
WANG Liguo, DENG Luqun, ZHANG Jing. A fast endmember selection method based on simplex growing algorithm[J]. Applied science and technology, 2010,37(4), 1-22
[7] CHANG C I, DU Qian, SUN T L, et al. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification[J]. IEEE transactions on geoscience and remote sensing, 1999, 37(6): 2631-2641.
[8] CHANG C I, WANG Su. Constrained band selection for hyperspectral imagery[J]. IEEE transactions on geoscience and remote sensing, 2006, 44(6): 1575-1585.
[9] 刘春红, 赵春晖, 张凌雁. 一种新的高光谱遥感图像降维方法[J]. 中国图象图形学报, 2005, 10(2): 218-222.
LIU Chunhong, ZHAO Chunhui, ZHANG Lingyan. A new method of hyperspectral remote sensing image dimensional reduction[J]. Journal of image and graphics, 2015, 10(2): 218-222.
[10] AHMAD M, HAQ I U, MUSHTAQ Q, et al. A new statistical approach for band clustering and band selection using K-means clustering[J]. IACSIT international journal of engineering and technology, 2011, 3(6): 606-614.
[11] 秦方普, 张爱武, 王书民, 等. 基于谱聚类与类间可分性因子的高光谱波段选择[J]. 光谱学与光谱分析, 2015, 35(5): 1357-1364.
QIN Fangpu, ZHANG Aiwu, WANG Shumin, et al. Hyperspectral band selection based on spectral clustering and inter-class separability factor[J]. Spectroscopy and spectral analysis, 2015, 35(5): 1357-1364.
[12] DUECK D. Affinity propagation: clustering data by passing messages[D]. Toronto, Canada: University of Toronto, 2009.
[13] 成卫青, 卢艳虹. 一种基于最大最小距离和SSE的自适应聚类算法[J]. 南京邮电大学学报: 自然科学版, 2015, 35(2): 102-107.
CHENG Weiqing, LU Yanhong. Adaptive clustering algorithm based on maximum and minmum distances, and SSE[J]. Journal of Nanjing university of posts and telecommunications: natural science edition, 2015,35(2): 102-107
[14] 刘颖, 谷延锋, 张晔, 等. 一种高光谱图像波段选择的快速混合搜索算法[J]. 光学技术, 2007, 33(2): 258-261, 265.
LIU Ying, GU Yanfeng, ZHANG Ye, et al. A fast hybrid search algorithm for band selection in hyperspectral images[J]. Optical technique, 2007, 33(2): 258-261, 265.
[15] 王立国, 肖倩, 结合Gabor滤波和同质性判定的高光谱图像分类[J]. 应用科技, 2013, 40(4): 21-26.
WANG Liguo, XIAO Qian. Hyperspectral imagery classification combined with Gabor filtering and homogeneity discrimination[J]. Applied science and technology, 2013,40(4): 21-26.
Similar References:

Memo

-

Last Update: 2018-02-01

Copyright © CAAI Transactions on Intelligent Systems