[1]LI Yuan,WANG Shirong,YU Ningbo.RGB-D-based SLAM and path planning for mobile robots[J].CAAI Transactions on Intelligent Systems,2018,13(3):445-451.[doi:10.11992/tis.201702005]
Copy

RGB-D-based SLAM and path planning for mobile robots

References:
[1] LEE S, JUNG S. Novel design and control of a home service mobile robot for Korean floor-living life style:KOBOKER[C]//Proceedings of the 8th International Conference on Ubiquitous Robots and Ambient Intelligence. Incheon, South Korea, 2011:863-867.
[2] HABIB M K, BAUDOIN Y, NAGATA F. Robotics for rescue and risky intervention[C]//Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society. Melbourne, Australia, 2011:3305-3310.
[3] 权美香, 朴松昊, 李国. 视觉SLAM综述[J]. 智能系统学报, 2016, 11(6):768-776. QUAN Meixiang, PIAO Songhao, LI Guo. An overview of visual SLAM[J]. CAAI transactions on intelligent systems, 2016, 11(6):768-776.
[4] 张学习, 杨宜民. 基于多传感器信息融合的移动机器人快速精确自定位[J]. 控制理论与应用, 2011, 28(3):443-448. ZHANG Xuexi, YANG Yimin. Fast and accurate self-localization of mobile robot based on multi-sensor[J]. Control theory & applications, 2011, 28(3):443-448.
[5] 于宁波, 李元, 徐昌, 等. 一种基于RGB-D SLAM的移动机器人定位和运动规划与控制方法[J]. 系统科学与数学, 2015, 35(7):838-847. YU Ningbo, LI Yuan, XU Chang, et al. Localization and motion planning and control of mobile robots with RGB-D SLAM[J]. Journal of systems science and mathematical sciences, 2015, 35(7):838-847.
[6] 张雪波, 方勇纯, 刘玺. 移动机器人自适应视觉伺服镇定控制[J]. 控制理论与应用, 2010, 27(9):1123-1130. ZHANG Xuebo, FANG Yongchun, LIU Xi. Adaptive visual servo regulation of mobile robots[J]. Control theory & applications, 2010, 27(9):1123-1130.
[7] 王可, 贾松敏, 李秀智, 等. 基于地面特征的移动机器人单目视觉里程计算法[J]. 光学学报, 2015, 35(5):0515002. WANG Ke, JIA Songmin, LI Xiuzhi, et al. Mobile robot monocular visual odometry algorithm based on ground features[J]. Acta optica sinica, 2015, 35(5):0515002.
[8] 张雪华, 刘华平, 孙富春, 等. 采用Kinect的移动机器人目标跟踪[J]. 智能系统学报, 2014, 9(1):34-39. ZHANG Xuehua, LIU Huaping, SUN Fuchun, et al. Target tracking of mobile robot using Kinect[J]. CAAI transactions on intelligent systems, 2014, 9(1):34-39.
[9] 雷丽充, 刘华平, 孙富春, 等. 面向灵巧操作的视觉目标识别[J]. 智能系统学报, 2015, 10(1):37-42. LEI Lichong, LIU Huaping, SUN Fuchun, et al. Visual object recognition for smart manipulation[J]. CAAI transactions on intelligent systems, 2015, 10(1):37-42.
[10] HENRY P, KRAININ M, HERBST E, et al. RGB-D mapping:using Kinect-style depth cameras for dense 3D modeling of indoor environments[J]. The international journal of robotics research, 2012, 31(5):647-663.
[11] ENDRES F, HESS J, ENGELHARD N, et al. An evaluation of the RGB-D SLAM system[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul, USA, 2012:1691-1696.
[12] BISWAS J, VELOSO M. Depth camera based localization and navigation for indoor mobile robots[C]//Proceedings of the RGB-D Workshop at RSS. San Francisco, CA, USA, 2011.
[13] KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan, 2007:225-234.
[14] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM:a versatile and accurate monocular SLAM system[J]. IEEE transactions on robotics, 2015, 31(5):1147-1163.
[15] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2:an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 33(5):1255-1262.
[16] 贾松敏, 王可, 郭兵, 等. 基于RGB-D相机的移动机器人三维SLAM[J]. 华中科技大学学报:自然科学版, 2014, 42(1):103-109. JIA Songmin, WANG Ke, GUO Bing, et al. Mobile robot 3D SLAM based on RGB-D camera[J]. Journal of Huazhong university of science and technology:natural science edition, 2014, 42(1):103-109.
[17] 朱笑笑, 曹其新, 杨扬, 等. 一种改进的KinectFusion三维重构算法[J]. 机器人, 2014, 36(2):129-136. ZHU Xiaoxiao, CAO Qixin, YANG Yang, et al. An improved KinectFusion 3D reconstruction algorithm[J]. Robot, 2014, 36(2):129-136.
[18] 李永锋, 张国良, 王蜂, 等. 基于快速视觉里程计和大回环局部优化模型的改进VSLAM算法[J]. 机器人, 2015, 37(5):557-565. LI Yongfeng, ZHANG Guoliang, WANG Feng, et al. Improved VSLAM algorithm based on fast visual odometry and large loop local optimization model[J]. Robot, 2015, 37(5):557-565.
[19] WIEDEMEYER T. IAI Kinect2[EB/OL]. GitHub, Inc, 2015. (2015-06-12)[2018-03-08]. https://github.com/code-iai/iai_kinect2.
[20] LU D V, HERSHBERGER D, SMART W D. Layered costmaps for context-sensitive navigation[C]//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA, 2014:709-715.
[21] GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with rao-blackwellized particle filters[J]. IEEE transactions on robotics, 2007, 23(1):34-46.
[22] 朱毅, 张涛, 宋靖雁. 非完整移动机器人的人工势场法路径规划[J]. 控制理论与应用, 2010, 27(2):152-158. ZHU Yi, ZHANG Tao, SONG Jingyan. Path planning for nonholonomic mobile robots using artificial potential field method[J]. Control theory and applications, 2010, 27(2):152-158.
[23] 石为人, 黄兴华, 周伟. 基于改进人工势场法的移动机器人路径规划[J]. 计算机应用, 2010, 30(8):2021-2023. SHI Weiren, HUANG Xinghua, ZHOU Wei. Path planning of mobile robot based on improved artificial potential field[J]. Journal of computer applications, 2010, 30(8):2021-2023.
[24] SIEGWART R, NOURBAKHSH I R, SCARAMUZZA D. Introduction to autonomous mobile robots[M]. 2nd ed. Cambridge, Massachusetts, England:MIT Press, 2011.
[25] CHEN Jian, SUN Dong, YANG Jie, et al. Leader-follower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme[J]. The international journal of robotics research, 2010, 29(6):727-747.
Similar References:

Memo

-

Last Update: 2018-06-25

Copyright © CAAI Transactions on Intelligent Systems