[1]LIU Xiaofang,LIU Peizhong,LUO Yanmin,et al.Improved artificial bee colony algorithm based on enhanced local search[J].CAAI Transactions on Intelligent Systems,2017,12(5):684-693.[doi:10.11992/tis.201612026]
Copy

Improved artificial bee colony algorithm based on enhanced local search

References:
[1] KARABOGA D. An idea based on honey bee swarm for numerical optimization. technical report-TR06[R]. Kayseri:Erciyes University, 2005.
[2] KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied soft computing, 2008, 8(1):687-697.
[3] KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm[J]. Applied mathematics and computation, 2009, 214(1):108-132.
[4] 秦全德,程适,李丽,等. 人工蜂群算法研究综述[J]. 智能系统学报, 2014, 9(2):127-135.QIN Quande, CHENG Shi, LI Li,et al. Artificial bee colony algorithm:a survey[J]. CAAI transactions on intelligent systems, 2014, 9(2):127-135.
[5] ZHU G, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied mathematics & computation, 2010, 217(7):3166-3173.
[6] 姜建国, 叶华, 刘慧敏,等. 融合快速信息交流和局部搜索的粒子群算法[J]. 哈尔滨工程大学学报, 2015,36(5):687-691.JIANG Jianguo, YE Hua, LIU Huimin, et al. Particle swarm optimization method with combination of rapid information communication and local search[J]. Journal of Harbin engineering university, 2015, 36(5):687-691.
[7] GAO Weifeng, Liu Sanyang, et al. Improved artificial bee colony algorithm for global optimization[J]. Information processing letters, 2011, 111(17):871-882.
[8] GAO Weifeng, LIU Sanyang. A modified artificial bee colony algorithm[J]. Computers and operations research, 2012, 39(3):687-697.
[9] GAO W F, LIU S Y, HUANG L L. A novel artificial bee colony algorithm with method[J]. Applied soft computing, 2013, 13(9):3763-3775.
[10] GAO W F, LIU S Y, HUANG L L. Enhancing artificial bee colony algorithm using more information-based search equations[J]. Information sciences, 2014, 270(1):112-133.
[11] GAO W, CHAN F T S, HUANG L, et al. Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood[J]. Information sciences, 2015, 316(C):180-200.
[12] ALATAS B. Chaotic bee colony algorithms for global numerical optimization[J]. Expert systems with applications, 2010, 37(8):5682-5687.
[13] 陈杰,沈艳霞,陆欣. 基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报, 2016,11(2):172-179. CHEN Jie, SHEN Yanxia, LU Xin. Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J]. CAAI transactions on intelligent systems, 2016, 11(2):172-179.
[14] YI, Wenchao,et al. Differential evolution algorithm with variable neighborhood search for hybrid flow shop scheduling problem[C]//IEEE, International Conference on Computer Supported Cooperative Work in Design IEEE. Nanchang, China 2016:233-238.
[15] KIRAN M S, HAKLI H, GUNDUZ M, et al. Artificial bee colony algorithm with variable search strategy for continuous optimization[J]. Information sciences, 2015, 300:140-157.
[16] SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[R]. KanGAL Report #2005005. India:ⅡT Kanpur, 2005.
[17] 王志刚,王明刚. 基于符号函数的多搜索策略人工蜂群算法[J]. 控制与决策, 2016, 31(11):2037-2044.WANG Zhigang, WANG Minggang. Multi-search strategy of artificial bee colony algorithm based on symbolic function[J]. Control and decision, 2016, 31(11):2037-2044.
Similar References:

Memo

-

Last Update: 2017-10-25

Copyright © CAAI Transactions on Intelligent Systems