[1]QIAN Weiyi,LI Ming.Improved particle swarm optimization algorithmwith probability convergence[J].CAAI Transactions on Intelligent Systems,2017,12(4):511-518.[doi:10.11992/tis.201610004]
Copy

Improved particle swarm optimization algorithmwith probability convergence

References:
[1] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Perth, Australia, 1995:1942-1948.
[2] SHI Y H, EBERHART R C. Empirical study of particle swarm optimization[C]//IEEE International Conference on Evolutionary Computation. Washington, USA, 1999:1945-1950.
[3] FENG Y, TENG G F A X, WANG Y, et al. Chaotic inertia weight in particle swarm optimization[C]//Proceedings of the 2nd international conference on innovative computing, information and control. Kumamoto, Japan, 2007:475.
[4] SHEN X, CHI Z Y, CHEN J C. et al. Particle swarm optimization with dynamic adaptive inertia weight[C]//International conference on challenges in environmental science and computer engineering. Wuhan, China, 2010:287-290.
[5] ADEWUMI A O, ARASOMWAN A M. An improved particle swarm optimizer based on swarm success rate for global optimization problems[J]. Journal of experimental and theoretical artificial intelligence, 2016, 28(3):441-483.
[6] PLUHACEK M, SENKERIK R, DAVENDRA D, et al.On the behavior and performance of chaos driven PSO algorithm with inertia weight[J]. Computers and mathematics with applications, 2013, 66:122-134.
[7] YANG C, GAO W, LIU N, et al. Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight[J]. Applied soft computing, 2015, 29:386-394.
[8] 郭建涛,刘瑞杰,陈新武. 用于跳频分量选取的修正适应度距离比粒子群算法[J]. 重庆邮电大学学报:自然科学版, 2015, 27(1):26-30.GUO Jiantao, LIU Ruijie, CHEN Xinwu. Modified fitness-distance ratio based particle swarm optimizer for selection of frequency hopping components[J]. Journal of chongqing university of posts and telecommunications:natural science edition, 2015, 27(1):26-30.
[9] ARDIZZON G, CAVAZZINI G, PAVESI G. Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithms[J]. Information sciences, 2015, 299:337-378.
[10] 姜建国,田旻,王向前,等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报, 2012, 39(4):74-79.JIANG Jianguo, TIAN Min, WANG Xiangqian, et al. Adaptive particle swarm optimization via disturbing acceleration coefficients[J]. Journal of xidian university, 2012, 39(4):74-79.
[11] 任凤鸣,李丽娟. 改进的PSO算法中学习因子(c1,c2)取值的实验与分析[J]. 广东工业大学学报, 2008, 25(1):86-89.REN Fengming, LI Lijuan. Experiment and analysis of the value selection of acceleration coefficients (c1,c2) in IPSO method[J]. Journal of Guangdong university of technology, 2008, 25(1):86-89.
[12] GRIMACCIA F, MUSSETTA M, ZICH R. Genetical swarm optimization:self-adaptive hybrid evolutionary algorithm for electromagnetics[J]. IEEE transactions on antennas and propagation, 2007, 55(3):781-785.
[13] 熊伟丽,徐保国,吴晓鹏,等. 带变异算子的改进粒子群算法研究[J]. 计算机工程与应用, 2006, 42(26):1-3.XIONG Weili, XU Baoguo, WU Xiaopeng, et al. Study on the particle swarm optimization with mutation operator[J]. Computer engineering and applications, 2006, 42(26):1-3.
[14] 段玉红,高岳林. 基于差分演化的粒子群算法[J]. 计算机仿真, 2009, 26(6):212-215.DUAN Yuhong, GAO Yuelin. A particle swarm optimization algorithm based on differential evolution[J]. Computer simulation, 2009, 26(6):212-215.
[15] 王丽芳,曾建潮. 基于微粒群算法与模拟退火算法的协同进化方法[J]. 自动化学报, 2006, 32(4):630-635.WANG Lifang, ZENG JianChao. A cooperative evolutionary algorithm based on particle swarm optimization and simulated annealing algorithm[J]. Acta automatica sinica, 2006, 32(4):630-635.
[16] 艾兵,董明刚. 基于高斯扰动和自然选择的改进粒子群优化算法[J]. 计算机应用, 2016, 36(3):687-691.AI Bing, DONG Minggang. Improved particle swarm optimization algorithm based on Gaussian disturbance and natural selection[J]. Journal of computer applications, 2016, 36(3):687-691.
[17] 刘宏达,马忠丽. 均匀粒子群算法[J]. 智能系统学报,2010, 5(4):336-341.LIU Hongda, MA Zhongli. A particle swarm optimization algorithm based on uniform design[J]. CAAI transactions on intelligent systems, 2010, 5(4):336-341.
[18] PEHLIVANOGLU Y V. A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks[J]. IEEE transactions on evolutionary computation, 2013, 17:436-452.
[19] LIM W H, MATISA N A. An adaptive two-layer particle swarm optimization with elitist learning strategy[J]. Information sciences, 2014, 273:49-72.
[20] WU G, QIU D, YU Y, et al. Superior solution guided particle swarm optimization combined with local search techniques[J]. Expert systems with applications, 2014, 41:7536-7548.
[21] WANG H, SUN H, LI C, et al. Diversity enhanced particle swarm optimization with neighborhood search[J]. Information sciences, 2013, 223:119-135.
[22] TIAN D P. A review of convergence analysis of particle swarm optimization[J]. international journal of grid and distributed computing, 2013, 6:117-128.
[23] LIU Q. Order-2 stability analysis of particle swarm optimization[J]. Evolutionary computation, 2014, 23:187-216.
[24] PAN F, LI X T, ZHOU Q, et al. Analysis of standard particle swarm optimization algorithm based on Markov chain[J]. Acta automatica sinica, 2013, 39(4):81-289.
[25] 戴月明,朱达祥,吴定会. 核矩阵协同进化的震荡搜索粒子群优化算法[J]. 重庆邮电大学学报:自然科学版, 2016, 28(2):247-253.DAI Yueming, ZHU Daxiang, WU Dinghui. Shock search particle swarm optimization algorithm based on kernel matrix synergistic evolution[J]. Journal of chongqing university of posts and telecommunications:natural science edition, 2016, 28(2):247-253.
[26] YAO X, LIU Y, LIN G. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):81-102.
Similar References:

Memo

-

Last Update: 2017-08-25

Copyright © CAAI Transactions on Intelligent Systems