[1]NI Huaifa,SHEN Xiaobo,SUN Quansen.Robust canonical correlation analysis based onlow rank decomposition[J].CAAI Transactions on Intelligent Systems,2017,12(4):491-497.[doi:10.11992/tis.201607024]
Copy

Robust canonical correlation analysis based onlow rank decomposition

References:
[1] FUKUNAGA K. Introduction to statistical pattern recognition[M]. Academic press, 2013.
[2] FISHER R A. The use of multiple measurements in axonomic problems[J]. Annals of eugenics, 1936, 7(2):179-188.
[3] 杨勇,蔡舒博.一种基于两步降维和并行特征融合的表情识别方法[J]. 重庆邮电大学学报:自然科学版, 2015, 27(3):377-387.YANG Yong,CAI Shubo. Facial expression recognition method based on two-steps dimensionality reduction and parallel feature fusion[J]. Journal of chongqing university of posts and telecommunications:natural science edition, 2015, 27(3):377-387.
[4] HOU C, ZHANG C, WU Y, et al. Multiple view semi-supervised dimensionality reduction[J]. Pattern recognition, 2010, 43(3):720-730.
[5] HOTELLING H. Relations between two sets of variates[J]. Biometrika, 1936, 28(3/4):321-377.
[6] 孙权森,基于相关投影分析的特征抽取与图像识别研究[D]. 南京:南京理工大学, 2006.SUN Quansen. Research on feature extraction and image recognition based on correlation projection analysis[D]. Nanjing:Nanjing University of Science and Technology, 2006.
[7] HOU Shudong, 孙权森. 稀疏保持典型相关分析及在特征融合中的应用[J]. 自动化学报, 2012, 38(4):659-665.HOU Shudong, SUN Quansen. Sparse maintaining canonical correlation analysis and its application in feature fusion[J]. Journal of automation, 2012, 38(4):659-665.
[8] LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1):171-184.
[9] WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization[C]//Advances in neural information processing systems. Vancouver, BC, Canada, 2009:2080-2088.
[10] LIU G, LIN Z, YU Y. Robust subspace segmentation by low-rank representation[C]//Proceedings of the 27th international conference on machine learning (ICML-10). Haifa, Israel. 2010:663-670.
[11] 袁运浩.多重集典型相关分析理论及在高维多表示数据中的应用[D]. 南京:南京理工大学, 2013.YUAN Yunhao. Canonical correlation analysis theory of multiple sets and its application in multi-representation data[D]. Nanjing:Nanjing University of Science and Technology, 2013.
[12] 孙权森, 曾生根, 王平安,等. 典型相关分析的理论及其在特征融合中的应用[J]. 计算机学报, 2005, 28(9):1524-1533.SUN Quansen, ZENG Shenggen, WANG Pingan, et al. The theory of canonical correlation analysis and its application in feature fusion[J]. Chinese journal of computers, 2005, 28(9):1524-1533.
[13] 张凡龙. 基于核范数的低秩理论与方法研究[D]. 南京:南京理工大学,2015.ZHANG Fanlong. Research on low rank theory and method based on kernel norm[D]. Nanjing:Nanjing University of Science and Technology,2015.
[14] CANDèS E J, LI X, MA Y, et al. Robust principal component analysis[J]. Journal of the ACM (JACM), 2011, 58(3):11.
[15] BAO B K, LIU G, XU C, et al. Inductive robust principal component analysis[J]. IEEE transactions on image processing, 2012, 21(8):3794-3800.
[16] SHEN X B, SUN Q S, YUAN Y H. A unified multiset canonical correlation analysis framework based on graph embedding for multiple feature extraction[J]. Neurocomputing, 2015, 148:397-408.
[17] FERDINANDO S, ANDY H. Parameterisation of a stochastic model for human face identification[C]//Proceedings of 2nd IEEE Workshop on Applications of Computer Vision. Sarasota FL, 1994.
[18] BELHUMEUR P, HEPANHA J, KRIEGMAN D. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(7):711-720.
[19] 袁宝华, 王欢, 任明武. 基于完整LBP特征的人脸识别[J]. 计算机应用研究, 2012, 29(4):1557-1559.YUAN Baohua, WANG Huan, REN Mingwu. Face recognition based on complete lbp feature[J]. Journal of computer applications, 2012, 29(4):1557-1559.
[20] 何国辉, 甘俊英. 二维主元分析在人脸识别中的应用研究[J]. 计算机工程与设计, 2006, 27(24):4667-4669.HE Guohui, GAN Junying. Application of two-dimensional principal component analysis in face recognition[J]. Computer engineering and design, 2006, 27(24):4667-4669.
[21] 赵军,赵艳,杨勇,等. 基于降维的堆积降噪自动编码机的表情识别方法[J].重庆邮电大学学报:自然科学版, 2016, 28(6):844-848.ZHAO Jun, ZHAO Yan, YANG Yong, et al. Facial expression recognition method based on stacked denoisingauto-encoders and feature reduction[J]. Journal of chongqing university of posts and telecommunications:natural science edition, 2016, 28(6):844-848.
Similar References:

Memo

-

Last Update: 2017-08-25

Copyright © CAAI Transactions on Intelligent Systems