[1]LI Rui,WANG Xiaodan,LEI Lei,et al.HRRP fusion recognition by RVM and DS evidence theory[J].CAAI Transactions on Intelligent Systems,2016,11(4):554-560.[doi:10.11992/tis.201511021]
Copy

HRRP fusion recognition by RVM and DS evidence theory

References:
[1] 李丽亚. 宽带雷达目标识别技术研究[D]. 西安:西安电子科技大学, 2009. LI Liya. Study on wideband radar target recognition[D]. Xi’an:Xidian University, 2009.
[2] 张学峰, 王鹏辉, 冯博, 等. 基于多分类器融合的雷达高分辨距离像目标识别与拒判新方法[J]. 自动化学报, 2014, 40(2):348-356. ZHANG Xuefeng, WANG Penghui, FENG Bo, et al. A new method to improve radar HRRP recognition and outlier rejection performances based on classifier combination[J]. Acta automatica sinica, 2014, 40(2):348-356.
[3] 孙佳佳, 童创明. 基于一维距离像序列的弹道目标融合识别研究[J]. 微波学报, 2013, 29(3):72-76. SUN Jiajia, TONG Chuangming. Study on ballistic target fusion recognition based on HRRP[J]. Journal of microwaves, 2013, 29(3):72-76.
[4] 蕾蕾, 王晓丹, 邢雅琼, 等. 结合SVM和DS证据理论的多极化HRRP分类研究[J]. 控制与决策, 2013, 28(6):861-866. LEI Lei, WANG Xiaodan, XING Yaqiong, et al. Multi-polarized HRRP classification by SVM and DS evidence theory[J]. Control and decision, 2013, 28(6):861-866.
[5] 曹向海, 刘宏伟, 吴顺君. 多极化多特征融合的雷达目标识别研究[J]. 系统工程与电子技术, 2008, 30(2):261-264. CAO Xianghai, LIU Hongwei, WU Shunjun. Utilization of multiple polarization data and multiple features for radar target identification[J]. Systems engineering and electronics, 2008, 30(2):261-264.
[6] CHO H, CHUN J, SONG S, et al. Radar target classification using the relevance vector machine[C]//Proceedings of IEEE Radar Conference. Cincinnati, OH:IEEE, 2014:1333-1336.
[7] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The journal of machine learning research, 2001, 1:211-244.
[8] TIPPING M E. The relevance vector machine[J]. Advances in neural information processing systems, 1999, 12(3):652-658.
[9] BISHOP C M, TIPPING M E. Variational relevance vector machines[C]//Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA:ACM, 2000:46-53.
[10] MIANJI F A, ZHANG Ye. Robust hyperspectral classification using relevance vector machine[J]. IEEE transactions on geoscience and remote sensing, 2011, 49(6):2100-2112.
[11] MENG Qingfang, CHEN Yuehui, ZHANG Qiang, et al. Local prediction of network traffic measurements data based on relevance vector machine[M]//GUO Chengan, HOU Zengguang, ZENG Zhigang. Advances in Neural Networks-ISNN 2013. Berlin Heidelberg:Springer, 2013:606-613.
[12] BAO Yan, WANG Hui, WANG Beining. Short-term wind power prediction using differential EMD and relevance vector machine[J]. Neural computing and applications, 2014, 25(2):283-289.
[13] 韩德强, 杨艺, 韩崇昭. DS证据理论研究进展及相关问题探讨[J]. 控制与决策, 2014, 29(1):1-11. HAN Deqiang, YANG Yi, HAN Chongzhao. Advances in DS evidence theory and related discussions[J]. Control and decision, 2014, 29(1):1-11.
[14] 张玉玺, 王晓丹, 姚旭, 等. 基于Bagging-SVM动态集成的多极化HRRP识别[J]. 系统工程与电子技术, 2012, 34(7):1366-1371. ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. HRRP recognition for polarization radar based on Bagging-SVM dynamic ensemble[J]. Systems engineering and electronics, 2012, 34(7):1366-1371.
[15] 徐庆, 王秀春, 李青, 等. 基于高分辨一维像的目标特征提取方法[J]. 现代雷达, 2009, 31(6):60-63. XU Qing, WANG Xiuchun, LI Qing, et al. Extraction of target feature using high resolution range profile[J]. Modern radar, 2009, 31(6):60-63.
[16] PLATT J C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[M]//SMOLA A J, BARTLETT P L, SCHOLKOPF B, et al. Advances in Large Margin Classifiers. Cambridge:MIT Press, 1999:61-74.
[17] 李晓宇, 张新峰, 沈兰荪. 一种确定径向基核函数参数的方法[J]. 电子学报, 2005, 33(12A):2459-2463. LI Xiaoyu, ZHANG Xinfeng, SHEN Lansun. A selection means on the parameter of radius basis function[J]. Acta electronica sinica, 2005, 33(12A):2459-2463.
[18] CHANG C C, LIN C J. LIBSVM:a library for support vector machines[ED/OL].[2013-03-04]. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[19] TIPPING M. Sparse Bayesian models (and the RVM)[EB/OL].[2006-10-12]. http://www.relevancevector.com.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems