[1]HAO Jie,XIE Jun,SU Jingqiong,et al.An unsupervised approach for sentiment classification based on weighted latent dirichlet allocation[J].CAAI Transactions on Intelligent Systems,2016,11(4):539-545.[doi:10.11992/tis.201606007]
Copy

An unsupervised approach for sentiment classification based on weighted latent dirichlet allocation

References:
[1] AGARWAL B, PORIA S, MITTAL N, et al. Concept-level sentiment analysis with dependency-based semantic parsing:a novel approach[J]. Cognitive computation, 2015, 7(4):487-499.
[2] CAMBRIA E. Affective computing and sentiment analysis[J]. IEEE intelligent systems, 2016, 31(2):102-107.
[3] LIN Chenghua, HE Yulan. Joint sentiment/topic model for sentiment analysis[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China:ACM, 2009:375-384.
[4] LIN Chenghua, HE Yulan, EVERSON R. A comparative study of Bayesian models for unsupervised sentiment detection[C]//Proceedings of the Fourteenth Conference on Computational Natural Language Learning. Stroudsburg, PA, USA:ACM, 2011:144-152.
[5] TITOV I, MCDONALD R. A joint model of text and aspect ratings for sentiment summarization[C]//Proceedings of Annual Meeting of the Computational Linguistics. Columbus, USA:Association for Computational Linguistics, 2008:308-316.
[6] PAUL M, GIRJU R. A two-dimensional topic-aspect model for discovering multi-faceted topics[C]//Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. Atlanta, USA:AAAI, 2010:545-550.
[7] MEI Qiaozhu, LING Xu, WONDRA M, et al. Topic sentiment mixture:modeling facets and opinions in weblogs[C]//Proceedings of the 16th International Conference on World Wide Web. North Carolina, USA:ACM, 2010:171-180.
[8] JO Y, OH A H. Aspect and sentiment unification model for online review analysis[C]//Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. Hong Kong, China:ACM, 2011:815-824.
[9] 欧阳继红, 刘燕辉, 李熙铭, 等. 基于LDA的多粒度主题情感混合模型[J]. 电子学报, 2015, 43(9):1875-1880. OUYANG Jihong, LIU Yanhui, LI Ximing, et al. Multi-grain sentiment/topic model based on LDA[J]. Acta electronica sinica, 2015, 43(9):1875-1880.
[10] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. The journal of machine learning research, 2003, 3:993-1022.
[11] RUBIN T N, CHAMBERS A, SMYTH P, et al. Statistical topic models for multi-label document classification[J]. Machine learning, 2012, 88(1/2):157-208.
[12] ANDRZEJEWSKI D, BUTTLER D. Latent topic feedback for information retrieval[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA:ACM, 2011:600-608.
[13] WALLACH H M. Topic modeling:beyond bag-of-words[C]//Proceedings of the 23rd International Conference on Machine Learning. New York, USA:ACM, 2006:977-984.
[14] CHURCH K W, HANKS P. Word association norms, mutual information, and lexicography[J]. Computational linguistics, 1990, 16(1):22-29.
[15] TURNEY P D, LITTMAN M L. Measuring praise and criticism:inference of semantic orientation from association[J]. ACM transactions on information systems, 2003, 21(4):315-346.
[16] 张小平. 主题模型及其在中医临床诊疗中的应用研究[D]. 北京:北京交通大学, 2011:57-58. ZHANG Xiaoping. Study on topic model and its application to TCM clinical diagnosis and treatment[D]. Beijing:Beijing Jiaotong University, 2011:57-58.
[17] ALSUMAIT L, BARBARá D, GENTLE J, et al. Topic significance ranking of LDA generative models[C]//Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases. Bled, Slovenia:ACM, 2009:67-82.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems