[1]HU Xiaosheng,WEN Juping,ZHONG Yong.Imbalanced data ensemble classification using dynamic balance sampling[J].CAAI Transactions on Intelligent Systems,2016,11(2):257-263.[doi:10.11992/tis.201507015]
Copy

Imbalanced data ensemble classification using dynamic balance sampling

References:
[1] CATENI S, COLLA V, VANNUCCI M. A method for resampling imbalanced datasets in binary classification tasks for real-world problems[J]. Neurocomputing, 2014, 135: 32-41.
[2] ZHANG Huaxiang, LI Mingfang. RWO-Sampling: a random walk over-sampling approach to imbalanced data classification[J]. Information fusion, 2014, 20: 99-116.
[3] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16(1): 321-357.
[4] 郭丽娟, 倪子伟, 江弋, 等. 集成降采样不平衡数据分类方法研究[J]. 计算机科学与探索, 2013, 7(7): 630-638. GUO Lijuan, NI Ziwei, JIANG Yi, et al. Research on imbalanced data classification based on ensemble and under-sampling[J]. Journal of frontiers of computer and technology, 2013, 7(7): 630-638.
[5] 李雄飞, 李军, 董元方, 等. 一种新的不平衡数据学习算法PCBoost[J]. 计算机学报, 2012, 35(2): 202-209. LI Xiongfei, LI Jun, DONG Yuanfang, et al. A new learning algorithm for imbalanced data-PCBoost[J]. Chinese journal of computers, 2012, 35(2): 202-209.
[6] CHEN Xiaolin, SONG Enming, MA Guangzhi. An adaptive cost-sensitive classifier[C]//Proceedings of the 2nd International Conference on Computer and Automation Engineering. Singapore: IEEE, 2010, 1: 699-701.
[7] 李倩倩, 刘胥影. 多类类别不平衡学习算法: EasyEnsemble. M[J]. 模式识别与人工智能, 2014, 27(2): 187-192. LI Qianqian, LIU Xuying. EasyEnsemble. M for multiclass imbalance problem[J]. Pattern recognition and artificial intelligence, 2014, 27(2): 187-192.
[8] 韩敏, 朱新荣. 不平衡数据分类的混合算法[J]. 控制理论与应用, 2011, 28(10): 1485-1489. HAN Min, ZHU Xinrong. Hybrid algorithm for classification of unbalanced datasets[J]. Control theory & applications, 2012, 28(10): 1485-1489.
[9] WANG Shijin, XI Lifeng. Condition monitoring system design with one-class and imbalanced-data classifier[C]//Proceedings of the 16th International Conference on Industrial Engineering and Engineering Management. Beijing, China: IEEE, 2009: 779-783.
[10] 叶志飞, 文益民, 吕宝粮. 不平衡分类问题研究综述[J]. 智能系统学报, 2009, 4(2): 148-156. YE Zhifei, WEN Yimin, LV Baoliang. A survey of imbalanced pattern classification problems[J]. CAAI transactions on intelligent systems, 2009, 4(2): 148-156.
[11] 翟云, 杨炳儒, 曲武. 不平衡类数据挖掘研究综述[J]. 计算机科学, 2010, 37(10): 27-32. ZHAI Yun, YANG Bingyu, QU Wu. Survey of mining imbalanced datasets[J]. Computer science, 2010, 37(10): 27-32.
[12] HAN Hui, WANG Wenyuan, MAO Binghuan. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//International Conference on Intelligent Computing. Berlin Heidelberg, Germany: Springer, 2005: 878-887.
[13] HE Haibo, BAI Yang, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Hong Kong, China: IEEE, 2008: 1322-1328.
[14] BATISTA G, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD explorations newsletter, 2004, 6(1): 20-29.
[15] KUBAT M, MATWIN S. Addressing the curse of imbalanced training sets: one-sided selection[C]//Proceedings of the 14th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann, 1997: 179-186.
[16] 蒋盛益, 苗邦, 余雯. 基于一趟聚类的不平衡数据下抽样算法[J]. 小型微型计算机系统, 2012, 33(2): 232-236. JIANG Shengyi, MIAO Bang, YU Wen. Under-sampling method based on one-pass clustering for imbalanced data distribution[J]. Journal of Chinese computer systems, 2012, 32(2): 232-236.
[17] 胡小生, 钟勇. 基于加权聚类质心的SVM不平衡分类方法[J]. 智能系统学报, 2013, 8(3): 261-265. HU Xiaosheng, ZHONG Yong. Support vector machine imbalanced data classification based on weighted clustering centroid[J]. CAAI transactions on intelligent systems, 2013, 8(3): 261-265.
[18] 胡小生, 张润晶, 钟勇. 两层聚类的类别不平衡数据挖掘算法[J]. 计算机科学, 2013, 40(11): 271-275. HU Xiaosheng, ZHANG Runjing, ZHONG Yong. Two-tier clustering for mining imbalanced datasets[J]. Computer science, 2013, 40(11): 271-275.
[19] 陈思, 郭躬德, 陈黎飞. 基于聚类融合的不平衡数据分类方法[J]. 模式识别与人工智能, 2010, 23(6): 772-780. CHEN Si, GUO Gongde, CHEN Lifei. Clustering ensembles based classification method for imbalanced data sets[J]. Pattern recognition and artificial intelligence, 2010, 23(6): 772-780.
[20] UCI machine learning repository[EB/OL]. (2009-10-16)[2015-3-20]. http://archive.ics.uci.edu/ml.
[21] 李建更, 高志坤. 随机森林针对小样本数据类权重设置[J]. 计算机工程与应用, 2009, 45(26): 131-134. LI Jiangeng, GAO Zhikun. Setting of class weights in random forest for small-sample data[J]. Computer engineering and applications, 2009, 45(26): 131-134.
[22] CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTBoost: improving prediction of the minority class in boosting[C]//Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin Heidelberg: Springer, 2003, 2838: 107-119.
[23] SEIFFERT C, KHOSHGOFTAAR T M, VAN HULSE J, et al. RUSBoost: a hybrid approach to alleviating class imbalance[J]. IEEE transactions on system, man and cybernetics-part a: systems and humans, 2010, 40(1): 185-197.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems