[1]LI Hailin,LIANG Ye.Dynamic time warping based on piecewise aggregate approximation and data derivatives[J].CAAI Transactions on Intelligent Systems,2016,11(2):249-256.[doi:10.11992/tis.201507064]
Copy

Dynamic time warping based on piecewise aggregate approximation and data derivatives

References:
[1] 韩敏, 许美玲, 王新迎. 多元时间序列的子空间回声状态网络预测模型[J]. 计算机学报, 2014, 37(11): 2268-2275. HAN Min, XU Meiling, WANG Xinying. A multivariate time series prediction model based on subspace echo state network[J]. Chinese journal of computers, 2014, 37(11): 2268-2275.
[2] MARSZA EK A, BURCZY SKI T. Modeling and forecasting financial time series with ordered fuzzy candlesticks[J]. Information sciences, 2014, 273: 144-155.
[3] ZAMORA M, LAMBERT A, MONTERO G. Effect of some meteorological phenomena on the wind potential of Baja California[J]. Energy procedia, 2014, 57: 1327-1336.
[4] GRAVIO G D, MANCINI M, PATRIARCA R, et al. Overall safety performance of air traffic management system: forecasting and monitoring[J]. Safety science, 2015, 72: 351-362.
[5] 李海林, 郭韧 万校基. 基于特征矩阵的多元时间序列最小距离度量方法[J]. 智能系统学报, 2015, 10(3): 442-447. LI Hailin, GUO Ren, WAN Xiaoji. A minimum distance measurement method for multivariate time series based on the feature matrix[J]. CAAI transactions on intelligent systems, 2015, 10(3): 442-447.
[6] SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE transactions on acoustics, speech, and signal processing, 1978, 26(1): 43-49.
[7] IZAKIAN H, PEDRYCZ W, JAMAL I. Fuzzy clustering of time series data using dynamic time warping distance[J]. Engineering applications of artificial intelligence, 2015, 39: 235-244.
[8] ZHANG Zheng, TANG Ping, DUAN Rubing. Dynamic time warping under pointwise shape context[J]. Information sciences, 2015, 315: 88-101.
[9] 李正欣, 张凤鸣, 李克武. 基于DTW的多元时间序列模式匹配方法[J]. 模式识别与人工智能, 2011, 24(3): 425-430. LI Zhengxin, ZHANG Fengming, LI Kewu. DTW based pattern matching method for multivariate time series[J]. Pattern recognition and artificial intelligence, 2011, 24(3): 425-430.
[10] LI Hailin. Asynchronism-based principal component analysis for time series data mining[J]. Expert systems with applications, 2014, 41(6): 2842-2850.
[11] KEOGH E, PAZZANI M J. Derivative dynamic time warping[C]//Proceedings of the 1st SIAM International Conference on Data Mining. Chicago, IL, USA, 2001: 1-11.
[12] JEONG Y S, JAYARAMAN R. Support vector-based algorithms with weighted dynamic time warping kernel function for time series classification[J]. Knowledge-based systems, 2015, 75: 184-191.
[13] GóRECKI T, ?UCZAK M. Using derivatives in time series classification[J]. Data mining and knowledge discovery, 2013, 26(2): 310-331.
[14] 李海林, 杨丽彬. 时间序列数据降维和特征表示方法[J]. 控制与决策, 2013, 28(11): 1718-1722. LI Hailin, YANG Libin. Method of dimensionality reduction and feature representation for time series[J]. Control and decision, 2013, 28(11): 1718-1722.
[15] BANKó Z, ABONYI J. Mixed dissimilarity measure for piecewise linear approximation based time series applications[J]. Expert systems with applications, 2015, 42(21): 7664-7675.
[16] AGRAWAL R, FALOUTSOS C, SWAMI A. Efficient similarity search in sequence databases[C]//Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms. Berlin Heidelberg: Springer, 1993, 730: 69-84.
[17] WANG Hongfa. Clustering of hydrological time series based on discrete wavelet transform[J]. Physics procedia, 2012, 25: 1966-1972.
[18] WENG Xiaoqing, SHEN Junyi. Classification of multivariate time series using two-dimensional singular value decomposition[J]. Knowledge-based systems, 2008, 21(7): 535-539.
[19] LIN J, KEOGH E, WEI Li, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data mining and knowledge discovery, 2008, 15(2): 107-144.
[20] KEOGH E, XI X, WEI L, et al. The UCR time series classification/clustering homepage[EB/OL]. 2007. http://www.cs.ucr.edu/~eamonn/time_series_data/.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems