[1]LI Tao,WANG Shitong.Incremental fuzzy (c+p)-means clustering for large data[J].CAAI Transactions on Intelligent Systems,2016,11(2):188-199.[doi:10.11992/tis.201507013]
Copy

Incremental fuzzy (c+p)-means clustering for large data

References:
[1] BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2): 191-203.
[2] CAN F, DROCHAK N D II. Incremental clustering for dynamic document databases[C]//Proceedings of the 1990 Symposium on Applied Computing. Fayetteville, AR, USA, 1990: 61-67.
[3] KAUFMAN L, ROUSSEEUW P J. Finding groups in data: an introduction to cluster analysis[M]. New York: John Wiley & Sons, 2009: 830-832.
[4] GUHA S, RASTOGI R, SHIM K. Cure: an efficient clustering algorithm for large databases[J]. Information systems, 2001, 26(1): 35-58.
[5] CAN F. Incremental clustering for dynamic information processing[J]. ACM transactions on information systems, 1993, 11(2): 143-164.
[6] CAN F, FOX E A, SNAVELY C D, et al. Incremental clustering for very large document databases: Initial MARIAN experience[J]. Information sciences, 1995, 84(1/2): 101-114.
[7] ZHANG Tian, RAMAKIRSHNAN R, LIVNY M. BIRCH: An efficient data clustering method for very large databases[C]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York, USA, 1996: 103-114.
[8] NG R T, HAN Jiawei. CLARANS: A method for clustering objects for spatial data mining[J]. IEEE transactions on knowledge and data engineering, 2002, 14(5): 1003-1016.
[9] SHANKER B U, PAL N R. FFCM: An effective approach for large data sets[C]//Proceedings of the 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing. Iizuka, Japan, 1994: 331-332.
[10] CHENG Taiwai, GOLDGOF D B, HALL L O. Fast clustering with application to fuzzy rule generation[C]//Proceedings of 1995 IEEE International Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium. Yokohama, Japan, 1995: 2289-2295.
[11] KOLEN J F, HUTCHESON T. Reducing the time complexity of the fuzzy c-means algorithm[J]. IEEE transactions on fuzzy systems, 2002, 10(2): 263-267.
[12] KOTHARI D, NARAYANAN S T, DEVI K K. Extended fuzzy c-means with random sampling techniques for clustering large data[J]. International journal of innovative research in advanced engineering (IJIRAE), 2014, 1(1): 1-4.
[13] HORE P, HALL L O, GOLDGOF D B. Single pass fuzzy c means[C]//Proceedings of IEEE International Fuzzy Systems Conference. London, UK, 2007: 1-7.
[14] HORE P, HALL L O, GOLDGOF D B, et al. Online fuzzy c means[C]//Proceedings of Annual Meeting of the North American Fuzzy Information Processing Society. New York, USA, 2008: 1-5.
[15] HAVENS T, BEZDEK J, LECKIE C, et al. Fuzzy c-means algorithms for very large data[J]. IEEE transactions on fuzzy systems, 2012, 20(6): 1130-1146.
[16] WANG Yangtao, CHEN Lihui, MEI Jianping. Incremental fuzzy clustering with multiple medoids for large data[J]. IEEE transactions on fuzzy systems, 2014, 22(6): 1557-1568
[17] B?HM C, PLANT C, SHAO J, et al. Clustering by synchronization[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2010: 583-592.
[18] 应文豪, 许敏, 王士同, 等. 在大规模数据集上进行快速自适应同步聚类[J]. 计算机研究与发展, 2014, 51(4): 707-720. YING Wenhao, XU Min, WANG Shitong, et al. Fast adaptive clustering by synchronization on large scale datasets[J]. Journal of computer research and development, 2014, 51(4): 707-720.
[19] LESKI J M. Fuzzy (c+p) -means clustering and its application to a fuzzy rule-based classifier: towards good generalization and good interpretability[J]. IEEE transactions on fuzzy systems, 2014, 23(4): 802-812.
[20] LIU Jun, MOHAMMED J, CARTER J, et al. Distance-Based clustering of CGH data[J]. Bioinformatics, 2006, 22(16): 1971-1978.
[21] DENG Zhaohong, CHOI K S, CHUNG Fulai, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern recognition, 2010, 43(3): 767-781.
[22] RAND W M. Objective criteria for the evaluation of clustering methods[J]. Journal of the American statistical association, 1971, 66(336): 846-850.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems