[1]WANG Hongyuan,ZHANG Ji,CHEN Fuhua.Efficient tracker based on sparse coding with Euclidean local structure-based constraint[J].CAAI Transactions on Intelligent Systems,2016,11(1):136-147.[doi:10.11992/tis.201507073]
Copy

Efficient tracker based on sparse coding with Euclidean local structure-based constraint

References:
[1] ZHANG Shengping, YAO Hongxun, SUN Xin, et al. Sparse coding based visual tracking:review and experimental com-parison[J]. Pattern recognition, 2013, 46(7):1772-1788.
[2] YILMAZ A, JAVED O, SHAH M. Object tracking:a sur-vey[J]. ACM computing surveys (CSUR), 2006, 38(4):1-45.
[3] KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learn-ing-detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(7):1409-1422.
[4] AVIDAN S. Ensemble tracking[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(2):261-271.
[5] BABENKO B, YANG M H, BELONGIE S. Visual tracking with online multiple instance learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-tion (CVPR). Miami, USA, 2009:983-990.
[6] CANDèS E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE, signal processing magazine, 2008, 25(2):21-30.
[7] CANDèS E J, ROMBERG J, TAO J. Robust uncertainty principles:exact signal reconstruction from highly incom-plete frequency information[J]. IEEE transactions on infor-mation theory, 2006, 52(2):489-509.
[8] MEI Xue, LING Haibin, WU Yi, et al. Minimum error bounded efficient l1 tracker with occlusion detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado, USA, 2011:1257-1264.
[9] MEI Xue, LING Haibin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE transac-tions on pattern analysis and machine intelligence, 2011, 33(11):2259-2272.
[10] XU Huan, CARAMANIS C, MANNOR S. Sparse algo-rithms are not stable:a no-free-lunch theorem[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 34(1):187-193.
[11] LU Xiaoqiang, YUAN Yuan, LU Pingkun, et al. Robust visual tracking with discriminative sparse learning[J]. Pat-tern recognition, 2013, 46(7):1762-1771.
[12] YANG Jian, ZHANG Lei, XU Yong, et al. Beyond sparsi-ty:the role of L1-optimizer in pattern classification[J]. Pattern recognition, 2012, 45(3):1104-1118.
[13] DAUBECHIES I, DEFRISE M, DE MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on pure and ap-plied mathematics, 2004, 57(11):1413-1457.
[14] ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International journal of com-puter vision, 2008, 77(1-3):125-141.
[15] PORIKLI F, TUZEL O, MEER P. Covariance tracking u-sing model update based on lie algebra[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006:728-735.
[16] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2):303-338.
[17] WU Yi, LIM J, YANG M H. Online object tracking:A benchmark[C]//Proceedings of IEEE Conference on Com-puter Vision and Pattern Recognition (CVPR). Portland, USA, 2013:2411-2418.
[18] KRISTAN M, PflUGFELDER R, LEONARDIS A, et al. The visual object tracking VOT2013 challenge results[C]//Proceedings of IEEE International Conference on Computer Vision Workshops (ICCVW). Sydney, Austral-ia,2013:98-111.
[19] SONG Shuran, XIAO Jianxiong. Tracking revisited using RGBD camera:unified benchmark and baselines[C]//Proceedings of IEEE International Conference on Computer Vision (ICCV). Sydney, Australia, 2013:233-240.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems