[1]LI Ziqiang,JI Zhijian,CHAO Yongcui,et al.Graph controllability classes of networked multi-agentsystems with multi-signal inputs[J].CAAI Transactions on Intelligent Systems,2016,11(5):680-687.[doi:10.11992/tis.201601017]
Copy

Graph controllability classes of networked multi-agentsystems with multi-signal inputs

References:
[1] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE transactions on automatic control, 2004, 49(9):1520-1533.
[2] JADBABAIE A, LIN J, MORSE A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE transactions on automatic control, 2003, 48(6):988-1001.
[3] JI Z J, LIN H, LEE T H. Controllability of multi-agent systems with switching topology[C]//Proceeding of the 2008 IEEE Conference on Robotics, Automation and Mechatronics. Chengdu:IEEE, 2008:421-426.
[4] 刘菲, 纪志坚. 时滞二阶离散多智能体系统的可控性[J]. 系统科学与数学, 2015(3):298-307. LIU Fei, JI Zhijian. Controllability of second-order discrete-time multi-agent systems with time-delay[J]. Journal of systems science and mathematical sciences, 2015(3):298-307.
[5] 董洁, 纪志坚, 王晓晓. 多智能体网络系统的能控性代数条件[J]. 智能系统学报, 2015, 10(5):747-754. DONG Jie, JI Zhijian, WANG Xiaoxiao. Algebraic conditions for the controllability of multi-agent systems[J]. CAAI transactions on intelligent systems, 2015, 10(5):747-754.
[6] 晁永翠, 纪志坚, 王耀威, 等. 复杂网络在路形拓扑结构下可控的充要条件[J]. 智能系统学报, 2015, 10(4):577-582.CHAO Yongcui, JI Zhijian, WANG Yaowei, et al. Necessary and sufficient conditions for the controllability of complex networks with path topology[J]. CAAI transactions on intelligent systems, 2015, 10(4):577-582.
[7] 王晓晓, 纪志坚. 广播信号下非一致多智能体系统的能控性[J]. 智能系统学报, 2014, 9(4):401-406. WANG Xioaxiao, JI Zhijian. Controllability of non-identical multi-agent systems under a broadcasting control signal[J]. CAAI transactions on intelligent systems, 2014, 9(4):401-406.
[8] JI M, EGERSTEDT M. A graph-theoretic characterization of controllability for multi-agent systems[C]//Proceeding of the American Control Conference, 2007. New York:IEEE, 2007:4588-4593.
[9] JIANG Fangcui, WANG Long, XIE Guangming, et al. On the controllability of multiple dynamic agents with fixed topology[C]//Proceeding of the American Control Conference, 2009. St. Louis, Missouri, USA:IEEE, 2009:5665-5670.
[10] JI Zhijian, WANG Zidong, LIN Hai, et al. Controllability of multi-agent systems with time-delay in state and switching topology[J]. International journal of control, 2010, 83(2):371-386.
[11] LIU Bo, CHU Tianguang, WANG Long, et al. Controllability of a leader-follower dynamic network with switching topology[J]. IEEE transactions on automatic control, 2008, 53(4):1009-1013.
[12] RAHMANI A, JI Meng, MESBAHI M, et al. Controllability of multi-agent systems from a graph-theoretic perspective[J]. SIAM journal on control and optimization, 2009, 48(1):162-186.
[13] MARTINI S, EGERSTEDT M, BICCHI A. Controllability analysis of multi-agent systems using relaxed equitable partitions[J]. International journal of systems, control and communications, 2010, 2(1/2/3):100-121.
[14] CHAPMAN A, MESBAHI M. On symmetry and controllability of multi-agent systems[C]//Proceeding of the 2014 IEEE 53rd Annual Conference on Decision and Control. Los Angeles, CA, USA:IEEE, 2014:625-630.
[15] 刘金琨, 尔联洁. 多智能体技术应用综述[J]. 控制与决策, 2001, 16(2):133-140, 180. LIU Jinkun, ER Lianjie. Overview of application of multiagent technology[J]. Control and decision, 2001, 16(2):133-140, 180.
[16] 朱战霞, 郑莉莉. 无人机编队飞行控制器设计[J]. 飞行力学, 2007, 25(4):22-24. ZHU Zhanxia, ZHENG Lili. The controller design of UAV formation flight[J]. Flight dynamics, 2007, 25(4):22-24.
[17] LANE D M, MCFADZEAN A G. Distributed problem solving and real-time mechanisms in robot architectures[J]. Engineering applications of artificial intelligence, 1994, 7(2):105-117.
[18] AGUILAR C O, GHARESIFARD B. Graph controllability classes for the laplacian leader-follower dynamics[J]. IEEE transactions on automatic control, 2014, 60(6):1611-1623.
[19] TANNER H G. On the controllability of nearest neighbor interconnections[C]//Proceeding of the 43rd IEEE Conference on Decision and Control. Nassau, Bahamas:IEEE, 2004:2467-2472.
[20] HONG Yiguang, GAO Lixin, CHENG Daizhan, et al. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection[J]. IEEE transactions on automatic control, 2007, 52(5):943-948.
[21] MOREAU L. Stability of multiagent systems with time-dependent communication links[J]. IEEE transactions on automatic control, 2005, 50(2):169-182.
[22] OGREN P, EGERSTEDT M, HU Xiaoming. A control Lyapunov function approach to multiagent coordination[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida, USA:IEEE, 2001:1150-1155.
[23] BIGGS N. Algebraic graph theory[M]. 2nd ed. Cambridge:Cambridge University Press, 1993.
[24] 王树禾. 图论[M]. 北京:科学出版社, 2004.
[25] CHARTRAND G, ZHANG Ping. 图论导引[M]. 范益政, 译. 北京:人民邮电出版社, 2007:1-17. CHARTRAND G, ZHANG Ping. Introduction to graph theory[M]. FAN Yizheng, trans. Beijing:The People’s Posts and Telecommunications Press, 2007:1-17.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems