[1]CHENG Yang,WANG Shitong.A multiple alternative clusterings mining algorithm using locality preserving projections[J].CAAI Transactions on Intelligent Systems,2016,11(5):600-607.[doi:10.11992/tis.201508022]
Copy

A multiple alternative clusterings mining algorithm using locality preserving projections

References:
[1] DANG Xuanhong, BAILEY J. Generating multiple alternative clusterings via globally optimal subspaces[J]. Data mining and knowledge discovery, 2014, 28(3):569-592.
[2] GRETTON A, BOUSQUET O, SMOLA A, et al. Measuring statistical dependence with Hilbert-Schmidt norms[M]//JAIN S, SIMON H U, TOMITA E. Algorithmic Learning Theory. Berlin Heidelberg:Springer, 2005:63-77.
[3] HE Xiaofei, NIYOGI X. Locality preserving projections[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2003, 16:153-160.
[4] BAE E, BAILEY J. COALA:a novel approach for the extraction of an alternate clustering of high quality and high dissimilarity[C]//Proceedings of the 6th International Conference on Data Mining. Hong Kong, China, 2006:53-62.
[5] GONDEK D, HOFMANN T. Non-redundant data clustering[J]. Knowledge and information systems, 2007, 12(1):1-24.
[6] JAIN P, MEKA R, DHILLON I S. Simultaneous unsupervised learning of disparate clusterings[J]. Statistical analysis and data mining:the ASA data science journal, 2008, 1(3):195-210.
[7] DANG Xuanhong, BAILEY J. Generation of alternative clusterings using the CAMI approach[C]//Proceedings of the SIAM International Conference on Data Mining, SDM 2010. Columbus, Ohio, USA, 2010, 10:118-129.
[8] DANG Xuanhong, BAILEY J. A hierarchical information theoretic technique for the discovery of non linear alternative clusterings[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA, 2010:573-582.
[9] VINH N X, EPPS J. MinCEntropy:a novel information theoretic approach for the generation of alternative clusterings[C]//Proceedings of the IEEE International Conference on Data Mining. Sydney, Australia, 2010:521-530.
[10] COVER T M, THOMAS J A. Elements of information theory[M]. Chichester:John Wiley & Sons, 2012.
[11] KAPUR J N. Measures of information and their applications[M]. New York:Wiley-Interscience, 1994.
[12] PRINCIPE J C, XU D, FISHER J. Information theoretic learning[M]//HAYKIN S. Unsupervised Adaptive Filtering. New York:Wiley, 2000, 1:265-319.
[13] PARZEN E. On estimation of a probability density function and mode[J]. The annals of mathematical statistics, 1962, 33(3):1065-1076.
[14] CUI Ying, FERN X Z, DY J G. Non-redundant multi-view clustering via orthogonalization[C]//Proceedings of the 7th IEEE International Conference on Data Mining. Omaha, Nebraska, USA, 2007:133-142.
[15] DAVIDSON I, QI Zijie. Finding alternative clusterings using constraints[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Pisa, Italy, 2008:773-778.
[16] QI Zijie, DAVIDSON I. A principled and flexible framework for finding alternative clusterings[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:717-726.
[17] DASGUPTA S, NG V. Mining clustering dimensions[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010:263-270.
[18] NIU Donglin, DY J G, JORDAN M I. Multiple non-redundant spectral clustering views[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel, 2010:831-838.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems