[1]LIU Huan,WANG Jun,DENG Zhaohong,et al.A cascaded hidden space fuzzy C-regression algorithmand its application in multi-model modeling for thefermentation process[J].CAAI Transactions on Intelligent Systems,2016,11(5):670-679.[doi:10.11992/tis.201508015]
Copy

A cascaded hidden space fuzzy C-regression algorithmand its application in multi-model modeling for thefermentation process

References:
[1] 王骏, 王士同, 邓赵红. 聚类分析研究中的若干问题[J]. 控制与决策, 2012, 27(3):321-328. WANG Jun, WANG Shitong, DENG Zhaohong. Survey on challenges in clustering analysis research[J]. Control and decision, 2012, 27(3):321-328.
[2] 蒋亦樟, 邓赵红, 王骏, 等. 熵加权多视角协同划分模糊聚类算法[J]. 软件学报, 2014, 25(10):2293-2311. JIANG Yizhang, DENG Zhaohong, WANG Jun, et al. Collaborative partition multi-view fuzzy clustering algorithm using entropy weighting[J]. Journal of software, 2014, 25(10):2293-2311.
[3] 张敏, 于剑. 基于划分的模糊聚类算法[J]. 软件学报, 2004, 15(6):858-868. ZHANG Min, YU Jian. Fuzzy partitional clustering algorithms[J]. Journal of software, 2004, 15(6):858-868.
[4] 秦蓓蓓. 基于聚类分析的鲁棒自适应切换回归算法研究[D]. 上海:上海交通大学, 2012:14-39. QIN Beibei. Research on the robust and adaptive switching C-regressions models based on cluster analysis[D]. Shanghai:Shanghai Jiao Tong University, 2012:14-39.
[5] HATHAWAY R J, BEZDEK J C. Switching regression models and fuzzy clustering[J]. IEEE transactions on fuzzy systems, 1993, 1(3):195-204.
[6] WANG Shitong, JIANG Haifeng, LU Hongjun. A new integrated clustering algorithm GFC and switching regressions[J]. International journal of pattern recognition and artificial intelligence, 2002, 16(4):433-446.
[7] 沈红斌, 王士同, 吴小俊. 离群模糊切换回归模型研究[J]. 华东船舶工业学院学报:自然科学版, 2003, 17(3):31-36. SHEN Hongbin, WANG Shitong, WU Xiaojun. Research on fuzzy switching regression models with outliers[J]. Journal of east China shipbuilding institute:natural science edition, 2003, 17(3):31-36.
[8] WANG Shitong, CHUNG Fulai, WANG Jun, et al. A fast learning method for feedforward neural networks[J]. Neurocomputing, 2015, 149:295-307.
[9] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
[10] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 2012, 42(2):513-529.
[11] HUANG Guangbin, WANG Dianhui, LAN Yuan. Extreme learning machines:a survey[J]. International journal of machine learning and cybernetics, 2011, 2(2):107-122.
[12] JOLLIFFE I T. Principal component analysis[J]. New York:Springer, 2002.
[13] ZHOU Hongming, HUANG Guangbin, LIN Zhiping, et al. Stacked extreme learning machines[J]. IEEE transactions on cybernetics, 2014, 45(9):2013-2025.
[14] HE Qing, JIN Xin, DU Changying, et al. Clustering in extreme learning machine feature space[J]. Neurocomputing, 2014, 128:88-95.
[15] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press, 1981:203-239.
[16] HUANG Guangbin, CHEN Lei. Convex incremental extreme learning machine[J]. Neurocomputing, 2007, 70(16/17/18):3056-3062.
[17] HUANG Guangbin, CHEN Lei. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(16/17/18):3460-3468.
[18] DENG Zhaohong, CHOI K S, CHUNG Fulai, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern recognition, 2010, 43(3):767-781..
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems