[1]SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10(6):912-920.[doi:10.11992/tis.201509025]
Copy

Face recognition by weighted fusion of facial features

References:
[1] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1):71-86.
[2] SUN Yi, WANG Xiaogang, TANG Xiaoou. Deep learning face representation from predicting 10, 000 classes[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:1891-1898.
[3] HU Junlin, LU Jiwen, TAN Y P. Discriminative deep metric learning for face verification in the wild[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:1875-1882.
[4] HUANG G B, LEE H, LEARNED-MILLER E. Learning hierarchical representations for face verification with convolutional deep belief networks[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2012:2518-2525.
[5] ZHU Zhenyao, LUO Ping, WANG Xiaogang, et al. Deep learning identity-preserving face space[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013:113-120.
[6] SUN Yi, WANG Xiaogang, TANG Xiaoou. Hybrid deep learning for face verification[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013:1489-1496.
[7] TAIGMAN Y, YANG Ming, RANZATO M A, et al. Deepface:Closing the gap to human-level performance in face verification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:1701-1708.
[8] SUN Yi, CHEN Yuheng, WANG Xiaogang, et al. Deep learning face representation by joint identification-verification[J]. Advances in Neural Information Processing Systems. 2014.
[9] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[10] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[11] AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning a new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4):13-18.
[12] COOTES T F, TAYLOR C J, COOPER D H, et al. Active shape models-their training and application[J]. Computer Vision and Image Understanding, 1995, 61(1):38-59.
[13] MILBORROW S, NICOLLS F. Active shape models with SIFT descriptors and MARS[J]. VISAPP, 2014, 1(2):5.
[14] MILBORROW S, BISHOP T E, NICOLLS F. Multiview active shape models with SIFT descriptors for the 300-W face landmark challenge[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops. Sydney, NSW, Australia, 2013:378-385.
[15] Bengio Y, Delalleau O. On the expressive power of deep architectures[C]//Proceedings of the 22nd International Conference. Espoo, Finland, 2011:18-36.
[16] HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8):1771-1800.
[17] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-127.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems