[1]ZHOU Zhiping,LI Wenhui.Detection for moving targets based on color and texture features[J].CAAI Transactions on Intelligent Systems,2015,10(5):729-735.[doi:10.11992/tis.201408034]
Copy

Detection for moving targets based on color and texture features

References:
[1] WREN C R, AZARBAYEJANI A, DARRELL T, et al. Pfinder:real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785.
[2] ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge,UK, 2004:28-31.
[3] HERAS EVANGELIO R H, PATZOLD M, KELLER I, et al. Adaptively splitted GMM with feedback improvement for the task of background subtraction[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5):863-874.
[4] LI Xingliang, WU Yubao. Image objects detection algorithm based on improved Gaussian mixture model[J]. Journal of Multimedia, 2014, 9(1):152-158.
[5] HAN B, DAVIS L S. Density-based multifeature background subtraction with support vector machine[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5):1017-1023.
[6] WANG Hanzi, SUTER D. Background subtraction based on a robust consensus method[C]//18th International Conference on Pattern Recognition. Hong Kong, China, 2006:223-226.
[7] MADDALENA L, PETROSINO A. A self-organizing approach to background subtraction for visual surveillance applications[J]. IEEE Transactions on Image Processing, 2008, 17(7):1168-1177.
[8] MADDALENA L, PETROSINO A. The SOBS algorithm:what are the limits?[C]//2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, 2012:21-26.
[9] BARNICH O, VAN DROOGENBROECk M. ViBe:A universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6):1709-1724.
[10] HOFMANN M, TIEFENBACHER P, RIGOLL G. Background segmentation with feedback:The pixel-based adaptive segmenter[C]//2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, USA, 2012:38-43.
[11] BILODEAU G A, JODOIN J P, SAUNIER N. Change detection in feature space using local binary similarity patterns[C]//2013 International Conference on Computer and Robot Vision. Providence, America, 2013:106-112.
[12] LIAO Shengcai, ZHAO Guoying, KELLOKUMPU V, et al. Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, 2010:1301-1306.
[13] ST-CHARLES P L, BILODEAU G A, BERGEVIN R. Flexible background subtraction with self-balanced local sensitivity[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:414-419.
[14] JODOIN P M, MIGNOTTE M, KONRAD J. Statistical background subtraction using spatial cues[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(12):1758-1763.
[15] OJALA T, PIETIK?INEN M, M?ENP?? T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.
[16] JI Zhangjian, WANG Weiqiang. Detect foreground objects via adaptive fusing model in a hybrid feature space[J]. Pattern Recognition, 2014, 47(9):2952-2961.
[17] DUAN Haibin, DENG Yimin, WANG Xiaohua, et al. Small and dim target detection via lateral inhibition filtering and artificial bee colony based selective visual attention[J]. PLoS One, 2013, 8(8):e72035.
[18] CUCCHIARA R, GRANA C, PICCARDI M, et al. Detecting moving objects, ghosts, and shadows in video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10):1337-1342.
Similar References:

Memo

-

Last Update: 2015-11-16

Copyright © CAAI Transactions on Intelligent Systems