[1]ZHANG Yongku,YIN Lingxue,SUN Jinguang.Fuzzy clustering algorithm based on the improved genetic algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(4):627-635.[doi:10.3969/j.issn.1673-4785.201503033]
Copy

Fuzzy clustering algorithm based on the improved genetic algorithm

References:
[1] TAN Pangning, STEINBACH M, KUMAR V. 数据挖掘导论[M]. 北京: 人民邮电出版社, 2006: 298-320.
[2] GAO Yunguang, WANG Shicheng, LIU Shunbo. Automatic clustering based on GA-FCM for pattern recognition[C]//Computational Intelligence and Design. Changsha, China, 2009: 146-149.
[3] VIJAYACHITRA S, TAMILARASI A, KASTHURI N. Multiple input single output (MISO) process optimization using[C]//International Conference on Education Technology and Computer. Singapore, 2009: 248-252.
[4] LIU Suhua, HOU Huifang. A combination of mixture genetic algorithm and fuzzy c-means clustering[C]//IEEE International Symposium on IT in Medicine & Education. Ji’nan, China, 2009: 254-258.
[5] BELAHBIB F Z B, SOUAMI F. Genetic algorithm clustering for color image quantization[C]//2011 3rd European Workshop on Visual Information Processing. Paris, French, 2011: 83-87.
[6] BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy c-means clustering algorithm[J]. Computers and Geosciences, 1984, 10(2/3): 191-203.
[7] LIU Zhide, CHEN Jiabin, SONG Chunlei. A new RBF neural network with GA-based fuzzy c-means clustering[C]//Chinese Control and Decision Conference. Guilin, China, 2009: 208-211.
[8] HOLLAND J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge: MIT Press, 1992: 95-110.
[9] WANG Jianxin. Reducing the overlap among hierarchical clusters with a GA-based approach[C]//2009 1st International Conference on Information Science and Engineering. Nanjing, China, 2009: 924-927.
[10] MENENDEZ H D, BARRERO D F, CAMACHO D. A multi-objective genetic graph-based clustering algorithm with memory optimization[C]//2013 IEEE Congress on Evolutionary Computation. Cancun, Mexico, 2013: 3174-3181.
[11] RAZIZADEH N, BADAMCHIZAEH M A, GHASEMPOUR M S G. A new GA based method for improving hybrid clustering[C]//2013 21st Iranian Conference on Electrical Engineering. Mashhad, Iran, 2013: 1-6.
[12] NGUYEN D D, NGO L T. Multiple kernel interval type-2 fuzzy c-means clustering[C]//IEEE International Conference on Fuzzy Systems (FUZZ). Hyderabad, India, 2013: 1-8.
[13] ARNALDO H A, BEDREGAL B R C. A new way to obtain the initial centroid clusters in fuzzy c-means algorithm[C]//2013 2nd Workshop-School on Theoretical Computer Science (WEIT). Rio Grande, Brazil, 2013: 139-144.
[14] NGUYEN D H M, WONG K P. Controlling diversity of evolutionary algorithms[C]//Proceedings of the 2nd International Conference on Machine Learning and Cybernetics. Guilin, China, 2003: 775-780.
[15] ZHU K Q. Population diversity in genetic algorithm for vehicle routing problem with time windows[C]//European Conference on Machine Learning. Pisa, Italy, 2004: 537-547.
[16] CHENG S S, CHAO Y H, WANG H M, et al. A prototypes-embedded genetic K-means algorithm[C]//18th International Conference on Pattern Recognition. Hong Kong, China, 2006: 724-727.
[17] REZAEE M R, LELIEVELDT B P F, REIBER J H C. A new cluster validity indexes for the fuzzy c-mean[J]. Pattern Recognition Letters, 1998, 19(3-4): 237-246.
[18] BANDYOPADHYAY S, MAULIK U. An evolutionary technique based on K-means algorithm for optimal clustering in RN[J]. Information Sciences, 2002, 146(1-4): 221-237.
[19] SABAU A S. Variable density based genetic clustering[C]//2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). Timisoara, Romania, 2012: 200-206.
[20] XIAO Huiming. Application in performance assessment of the clinical department in hospital based on fuzzy cluster and genetic algorithm[C]//2014 International Conference on Computational Intelligence and Communication Networks. Bhopal, India, 2014: 1057-1061.
Similar References:

Memo

-

Last Update: 2015-08-28

Copyright © CAAI Transactions on Intelligent Systems