[1]WANG Dewen,SUN Zhiwei.A method for cluster analysis of electric power consumers based on in-memory computing[J].CAAI Transactions on Intelligent Systems,2015,10(4):569-576.[doi:10.3969/j.issn.1673-4785.201411011]
Copy

A method for cluster analysis of electric power consumers based on in-memory computing

References:
[1] 王蓓蓓, 李扬, 高赐威. 智能电网框架下的需求侧管理展望与思考[J]. 电力系统自动化, 2009, 33(20): 17-22. WANG Beibei, LI Yang, GAO Ciwei. Demand side management outlook under smart grid infrastructure[J]. Automation of Electric Power Systems, 2009, 33(20): 17-22.
[2] 何永秀, 王冰, 熊威, 等. 基于模糊综合评价的居民智能用电行为分析与互动机制设计[J]. 电网技术, 2012, 36(10): 247-252. HE Yongxiu, WANG Bing, XIONG Wei, et al. Analysis of residents’ smart electricity consumption behavior based on fuzzy synthetic evaluation and the design of interactive mechanism[J]. Power System Technology, 2012, 36(10): 247-252.
[3] 宋亚奇, 周国亮, 朱永利. 智能电网大数据处理技术现状与挑战[J]. 电网技术, 2013, 37(4): 927-935. SONG Yaqi, ZHOU Guoliang, ZHU Yongli. Present status and challenges of big data processing in smart grid [J]. Power System Technology, 2013, 37(4): 927-935.
[4] 何清. 物联网与数据挖掘云服务[J]. 智能系统学报, 2012, 7(3): 189-194. HE Qing. The Internet of things and the data mining cloud service[J]. CAAI Transactions on Intelligent Systems, 2012, 7(3): 189-194.
[5] 冯晓蒲, 张铁峰. 基于实际负荷曲线的电力用户分类技术研究[J]. 电力科学与工程, 2010, 26(9): 18-22. FENG Xiaopu, ZHANG Tiefeng. Research on electricity users classification technology based on actual load curve[J]. Electric Power Science and Engineering, 2010, 26(9): 18-22.
[6] 李培强, 李欣然, 陈辉华, 等. 基于模糊聚类的电力负荷特性的分类与综合[J]. 中国电机工程学报, 2005, 25(24): 73-78. LI Peiqiang, LI Xinran, CHEN Huihua, et al. The characteristics classification and synthesis of power load based on fuzzy clustering[J]. Proceedings of the CSEE, 2005, 25(24): 73-78.
[7] 段铷, 张彩庆, 刘爱芳. 模糊聚类在电力用户分类中的应用[J]. 电力需求侧管理, 2005, 7(5): 18-20. DUAN Ru, ZHANG Caiqing, LIU Aifang. Application of fuzzy clustering method in classification of electricity customers[J]. Power DSM, 2005, 7(5): 18-20.
[8] 张素香, 刘建明, 赵丙镇, 等. 基于云计算的居民用电行为分析模型研究[J]. 电网技术, 2013, 37(6): 1542-1546. ZHANG Suxiang, LIU Jianming, ZHAO Bingzhen, et al. Cloud computing-based analysis on residential electricity consumption behavior[J]. Power System Technology, 2013, 37(6): 1542-1546.
[9] 毛典辉. 基于MapReduce的Canopy-Kmeans改进算法[J]. 计算机工程与应用, 2012, 48(27): 22-26. MAO Dianhui. Improved Canopy-Kmeans algorithm based on MapReduce[J]. Computer Engineering and Applications, 2012, 48(27): 22-26.
[10] ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark: cluster computing with working sets[C] //Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley, CA, USA: USENIX Association, 2010.
[11] 赵薇, 刘杰, 叶丹. 基于组件的大数据分析服务平台[J]. 计算机科学, 2014, 41(9): 75-79. ZHAO Wei, LIU Jie, YE Dan. Module based big data analysis platform[J]. Computer Science, 2014, 41(9): 75-79.
[12] 赵莉, 候兴哲, 胡君, 等. 基于改进 k-means 算法的海量智能用电数据分析[J]. 电网技术, 2014, 38(10): 2715-2720. ZHAO Li, HOU Xingzhe, HU Jun, et al. Improved k-means algorithm based analysis on massive data of intelligent power utilization[J]. Power System Technology, 2014, 38(10): 2715-2720.
[13] 程艳柳. 基于云计算的智能电网数据挖掘的研究[D]. 保定: 华北电力大学, 2013:15-20. CHENG Yanliu. Research on smart grid data mining based on cloud computing[D]. Baoding: North China Electric Power University, 2013:15-20.
[14] ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing[C] //Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. Berkeley, USA: USENIX Association, 2012:1-14.
[15] LIN X Q, WANG P, WU B. Log analysis in cloud computing environment with Hadoop and Spark[C] //2013 5th IEEE International Conference on Broadband Network & Multimedia Technology (IC-BNMT). Guilin, China: IEEE, 2013: 273-276.
[16] GU L, LI H. Memory or time: performance evaluation for iterative operation on Hadoop and Spark[C]. 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC). Zhangjiajie, China: IEEE, 2013: 721-727.
[17] 海沫, 张书云, 马燕林. 分布式环境中聚类问题算法研究综述[J]. 计算机应用研究, 2013, 30(9): 2561-2564. HAI Mo, ZHANG Shuyun, MA Yanlin. Algorithm review of distributed clustering problem in distributed environments[J]. Application Research of Computers, 2013, 30(9): 2561-2564.
[18] 余晓山, 吴扬扬. 基于MapReduce的文本层次聚类并行化[J]. 计算机应用, 2014, 34(6): 1595-1599, 1680. YU Xiaoshan, WU Yangyang. Parallel text hierarchical clustering based on MapReduce[J]. Journal of Computer Applications, 2014, 34(6): 1595-1599, 1680.
[19] MCCALLUM A, NIGAM K, UNGAR L H. Efficient clustering of high-dimensional data sets with application to reference matching[C]//Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2000: 169-178.
[20] KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.
Similar References:

Memo

-

Last Update: 2015-08-28

Copyright © CAAI Transactions on Intelligent Systems