[1]QU Yanguang,ZHANG Qin,ZHU Qunxiong.Application of dynamic uncertain causality graph to dynamic fault diagnosis in chemical processes[J].CAAI Transactions on Intelligent Systems,2015,10(3):354-361.[doi:10.3969/j.issn.1673-4785.201503012]
Copy

Application of dynamic uncertain causality graph to dynamic fault diagnosis in chemical processes

References:
[1] ABDULGHAFOUR M, EL-GANAL M A. A fuzzy logic system for analog fault diagnosis[C]//1996 IEEE International Symposium on Circuits and Systems. Atlanta, USA, 1996: 97-100.
[2] ICHALAL D, MARX B, RAGOT J, et al. An approach for the state estimation of Takagi-Sugeno models and application to sensor fault diagnosis[C]//Proceedings of the 48th IEEE Conference on Decision and Control, Jointly with the 28th Chinese Control Conference. Shanghai, China, 2009: 7789-7794.
[3] BACHIR S, TNANI S, TRIGEASSOU J C, et al. Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines[J]. IEEE Transactions on Industrial Electronics, 2006, 53(3): 963-973.
[4] REPPA V, TZES A. Fault detection and diagnosis based on parameter set estimation[J]. IET Control Theory and Applications, 2011, 5(1): 69-83.
[5] DARWISH H A, TAALAB A M I, KAWADY T A. Development and implementation of an ANN-based fault diagnosis scheme for generator winding protection[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 208-214.
[6] MOREIRA M P, SANTOS L T B, VELLASCO M M B R. Power transformers diagnosis using neural networks[C]//International Joint Conference on Neural Networks. Orlando, USA, 2007: 1929-1934.
[7] FERRACUTI F, GIANTOMASSI A, LONGHI S, et al. Multi-scale PCA based fault diagnosis on a paper mill plant[C]//2011 IEEE Conference on Emerging Technologies & Factory Automation. Toulouse, France, 2011: 1-8.
[8] ZHAO X X, YUN Y X. A fault diagnosis method combined fuzzy logic with CMAC neural network for power transformers[C]//Chinese Conference on Pattern Recognition. Nanjing, China, 2009: 1-5.
[9] LAU C K, GHOSH K, HUSSAIN M A, et al. Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 120: 1-14.
[10] KARIMI I, SALAHSHOOR K. A new fault detection and diagnosis approach for a distillation column based on a combined PCA and ANFIS scheme[C]//2012 24th Chinese Control and Decision Conference. Taiyuan, China, 2012: 3408-3413.
[11] CHEN X Y, YAN X F. Using improved self-organizing map for fault diagnosis in chemical industry process[J]. Chemical Engineering Research and Design, 2012, 90(12): 2262-2277.
[12] DONG C L, WANG Y J, ZHANG Q, et al. The methodology of dynamic uncertain causality graph for intelligent diagnosis of vertigo[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 162-174.
[13] ZHANG Qin, DONG Chunling, CUI Yan, et al. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning: statistics base, matrix, and application[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4): 645-663.
[14] 杨佳婧, 张勤, 朱群雄. 动态不确定因果图在化工过程故障诊断中的应用[J]. 智能系统学报, 2014, 9(2): 154-160.YANG Jiajing, ZHANG Qin, ZHU Qunxiong. Application of dynamic uncertain causality graph to fault diagnosis in chemical processes[J]. CAAI Transactions on Intelligent Systems, 2014, 9(2): 154-160.
[15] ZHANG Qin. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases[J]. Journal of Computer Science and Technology, 2012, 27(1): 1-23.
[16] VERRON S, TIPLICA T, KOBI A. Monitoring of complex processes with Bayesian networks[M]//REBAI A. Bayesian Network. Rijeka, Croatia: Sciyo, 2010: 213-228.
Similar References:

Memo

-

Last Update: 2015-07-15

Copyright © CAAI Transactions on Intelligent Systems