[1]WU Xiyin,YAN Yunyang,DU Jing,et al.Fire detection based on fusion of multiple features[J].CAAI Transactions on Intelligent Systems,2015,10(2):240-247.[doi:10.3969/j.issn.1673-4785.201406022]
Copy

Fire detection based on fusion of multiple features

References:
[1] SASIREKHA M S P, RAMYA M S, PRASANTH M R M, et al. A survey about automatic flame/fire detection in videos[J]. International Journal of Research in Advent Technology, 2014, 2(2): 145-150.
[2] ZHANG L, LIU X. Fire recognition based on multiple features of video images[C]//Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering. Paris, France, 2013: 1597-1600.
[3] 严云洋, 唐岩岩, 郭志波, 等. 融合色彩和轮廓特征的火焰检测[J]. 微电子学与计算机, 2011, 10: 137-141, 145.YAN Yunyang, TANG Yanyan, GUO Zhibo, et al. Fusion of flame color and its contour for fire detection[J]. Microelectronics & Computer, 2011, 10: 137-141, 145.
[4] CHEN L H, HUANG W C. Fire detection using spatial-temporal analysis[C]//Proceedings of the World Congress on Engineering. London, UK, 2013: 2222-2225.
[5] CHEN T H, WU P H, CHIOU Y C. An early fire-detection method based on image processing[C]//International Conference on Image Processing (ICIP).[S.l], China, 2004: 1707-1710.
[6] HABIBOGLU Y, GUNAY O, CETIN A E. Flame detection method in video using covariance descriptors[C]//IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Prague, Czech, 2011: 1817-1820.
[7] 王莹, 李文辉. 基于多特征融合的高精度视频火焰检测算法[J]. 吉林大学学报: 工学版, 2010(3): 769-775.WANG Ying, LI Wenhui. High-precision video flame detection algorithm based on multi-feature fusion[J]. Journal of Jilin University: Engineering and Technology Edition, 2010(3): 769-775.
[8] MENGXIN L I, WEJING X U, KE X U, et al. A new hybrid feature extraction method based on accurate motion area[J]. Journal of Electrical Engineering, 2013, 11(10): 5563-5570.
[9] CHEN J, HE Y, WANG J. Multi-feature fusion based fast video flame detection[J]. Building and Environment, 2010, 45(5): 1113-1122.
[10] 严云洋, 唐岩岩, 刘以安, 等. 使用多尺度LBP特征和SVM的火焰识别算法[J]. 山东大学学报: 工学版, 2012(5): 47-52, 58.YAN Yunyang, TANG Yanyan, LIU Yi’an, et al. Flame detection based on LBP features with multi-scales and SVM[J]. Journal of Shandong University: Engineering Science, 2012(5): 47-52, 58.
[11] LEI W, LIU J. Early fire detection in coalmine based on video processing[C]//International Conference on Communication, Electronics and Automation Engineering. Berlin, German, 2013: 239-245.
[12] YANG X, WANG J, HE S. A SVM approach for vessel fire detection based on image processing[C]//Proceedings of International Conference on Modelling, Identification & Control (ICMIC). Wuhan, China, 2012: 150-153.
[13] XI Z, FANG X, ZHEN S, et al. Video flame detection algorithm based on multi-feature fusion technique[C]// Control and Decision Conference (CCDC). Guiyang, China, 2012: 4291-4294.
[14] ZHAO J, ZHANG Z, HAN S, et al. SVM based forest fire detection using static and dynamic features[J]. Computer Science and Information Systems, 2011, 8(3):821-841.
[15] 闵永林. 大空间智能消防水炮灭火系统研究[D]. 上海: 上海大学, 2010: 58-73.MIN Yonglin. Intelligent water fire monitor systems applied in large space places[D]. Shanghai: Shanghai University, 2010: 58-73.
[16] XUAN T T, KIM J M. Fire flame detection in video sequences using multi-stage pattern recognition techniques[J]. Engineering Applications of Artificial Intelligence, 2012, 25(7): 1365-1372.
[17] OJALA T, PIETILAINEN M, MAENPAA T. Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
Similar References:

Memo

-

Last Update: 2015-06-15

Copyright © CAAI Transactions on Intelligent Systems