[1]ZENG Xianling,ZHANG Liyan,HU Ronghua.An SVDD algorithm for hyperspectral anomaly detection based on principal component modeling[J].CAAI Transactions on Intelligent Systems,2014,9(3):343-348.[doi:10.3969/j.issn.1673-4785.201309081]
Copy

An SVDD algorithm for hyperspectral anomaly detection based on principal component modeling

References:
[1] REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10):1760-1770.
[2] THOMAS A M. Extending the rx anomaly detection algorithm to continuous spectral and spatial domains[C]//Proc of IEEE SoutheastCon. Huntsville, Alabama, 2008:557-562.
[3] 史振威, 吴俊, 杨硕, 等. RX及其变种在高光谱图像中的异常检测[J]. 红外与激光工程, 2012, 41(3):796-802. SHI Zhenwei, WU Jun, YANG Shuo, et al. RX and its variants for anomaly detection in hyperspectral images[J]. Infrared and Laser Engineering, 2012, 41(3):796-802.
[4] 刘明, 杜小平, 孙洁. 一种改进的基于正交子空间投影的高光谱图像异常检测算法[J]. 装备学院学报, 2013, 23(4):92-96. LIU Ming, DU Xiaoping, SUN Jie. Anomaly detection based on improved orthogonal subspace projection algorithm in hyperspectral imagery[J]. Journal of Academy of Equipment, 2013, 23(4):92-96.
[5] 肖雄斌, 厉小润, 赵辽英. 基于最小噪声分离变换的高光谱异常检测方法研究[J]. 计算机应用与软件, 2012, 29(4):125-128. XIAO Xiongbin, LI Xiaorun, ZHAO Liaoying. On anomaly detection of hyperspectral image based on minimum noise fraction[J]. Computer Applications and Software, 2012, 29(4):125-128.
[6] 成宝芝, 赵春晖, 王玉磊. 基于四阶累积量的波段子集高光谱图像异常检测[J]. 光电子·激光, 2012, 23(8):1582-1588.CHENG Baozhi, ZHAO Chunhui, WANG Yulei. Anomaly detection of hyperspectral image for band subsets based on fourth order cumulant[J]. Journal of Optoelectronics·Laser, 2012, 23(8):1582-1588.
[7] HARSANYI J C. Detection and classification of subpixel spectral signatures in hyperspectral image sequences[D]. Baltimore:University of Maryland, 1993:116.
[8] 张立燕, 谌德荣, 陶鹏. 基于顶点成分分析的高光谱图像低概率异常检测方法研究[J]. 宇航学报, 2007, 28(5):1262-1265. ZHANG Liyan, CHEN Derong, TAO Peng. Anomaly detection for hyperspectral imagery based on vertex component analysis[J]. Journal of Astronautics, 2007, 28(5):1262-1265.
[9] BANERJEE A, BURLINA P, DIEHL C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2282-2291.
[10] 谌德荣, 宫久路, 何光林, 等. 高光谱图像全局异常检测RFS-SVDD算法[J]. 宇航学报, 2010, 31(1):228-232. CHEN Derong, GONG Jiulu, HE Guanglin, et al. A RFS-SVDD algorithm for hyperspectral global anomaly detection[J]. Journal of Astronautics, 2010, 31(1):228-232.
[11] 蒲晓丰, 雷武虎, 汤俊杰, 等. 基于带野值的SVDD的高光谱图像异常检测[J]. 光电工程, 2010, 37(12):83-87. PU Xiaofeng, LEI Wuhu, TANG Junjie, et al. Anomaly detection for hyperspectral image based on svdd with negative examples[J]. Opto-Electronic Engineering, 2010, 37(12):83-87.
[12] 谌德荣, 张立燕, 陶鹏, 等. 结合邻域聚类分割的高光谱图像异常检测支持向量数据描述方法[J]. 宇航学报, 2007, 28(3):767-771. CHEN Derong, ZHANG Liyan, TAO Peng, et al. Support vector data description for anomaly detection in hyperspectral imagery combined with neighboring clustering segmentation[J]. Journal of Astronautics, 2007, 28(3):767-771.
[13] 张立燕. 高光谱图像异常检测算法研究[D].北京:北京理工大学, 2007:111.ZHANG Liyan. Hyperspectral image anomaly detection algorithm research[D]. Beijing:Beijing Institute of Technology, 2007:111.
[14] 何守印, 张立燕. 支持向量异常检测在图像有损压缩中的应用[J]. 电子器件, 2008, 31(2):410-413. HE Shouyin, ZHANG Liyan. Research on image compression method based on anomaly detection[J]. Chinese Journal Of Electron Devices, 2008, 31(2):410-413.
[15] 陶鹏, 谌德荣, 范宁军, 等. 基于RFS和ART的高光谱图像主成分提取方法[J]. 中北大学学报:自然科学版, 2010, 31(3):286-290. TAO Peng, CHEN Derong, FAN Ningjun, et al. Hyperspectral image principle component extraction method based on RFS and ART[J]. Journal of North University of China Natural Science Edition, 2010, 31(3):286-290.
[16] 李杰, 赵春晖, 梅锋. 利用背景残差数据检测高光谱图像异常[J]. 红外与毫米波学报, 2010, 29(2):150-155. LI Jie, ZHAO Chunhui, MEI Feng. Detecting hyperspectral anomaly by using background residual error data[J]. Journal of Infrared and Millimeter Waves, 2010, 29(2):150-155.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems