[1]ZHANG Ping,LIU Sanyang,ZHU Mingmin.Structure learning of Bayesian networks by use of the artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(3):325-329.[doi:10.3969/j.issn.1673-4785.201310014]
Copy

Structure learning of Bayesian networks by use of the artificial bee colony algorithm

References:
[1] CAI Z, SUN S, SI S, et al. Identifying product failure rate based on a conditional Bayesian network classifier[J]. Expert Systems with Applications, 2011, 38(5):5036-5043.
[2] HSIEH N C, HUNG L P. A data driven ensemble classifier for credit scoring analysis[J]. Expert Systems with Applications, 2010, 37(1):534-545.
[3] De CAMPOS L M. Independency relationships and learning algorithms for singly connected networks[J]. Journal of Experimental & Theoretical Artificial Intelligence, 1998, 10(4):511-549.
[4] De CAMPOS L M, HUETE J F. A new approach for learning belief networks using independence criteria[J]. International Journal of Approximate Reasoning, 2000, 24(1):11-37.
[5] COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4):309-347.
[6] HECKERMAN D, GEIGER D, CHICKERING D M. Learning Bayesian networks:The combination of knowledge and statistical data[J]. Machine Learning, 1995, 20(3):197-243.
[7] LAM W, BACCHUS F. Learning Bayesian belief networks:an approach based on the MDL principle[J]. Computational Intelligence, 1994, 10(3):269-293.
[8] COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4):309-347.
[9] CHICKERING D M. Optimal structure identification with greedy search[J]. The Journal of Machine Learning Research, 2003(3):507-554.
[10] KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Erciyes university, engineering faculty, computer engineering department, 2005.
[11] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3):459-471.
[12] KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied soft Computing, 2008, 8(1):687-697.
[13] KARABOGA D, AKAY B. Artificial bee colony (abc) algorithm on training artificial neural networks[C]//2007 IEEE 15th Signal Processing and Communications Applications. Eskisehir:IEEE Press, 2007:1-4.
[14] KARABOGA D, OZTURK C. Neural networks training by artificial bee colony algorithm on pattern classification[J]. Neural Netw World, 2009, 19(3):279-292.
[15] OZTURK C, KARABOGA D. Hybrid artificial bee colony algorithm for neural network training[C]//2011 IEEE Congress on Evolutionary Computation. New Orleans, LA:IEEE Press, 2011:84-88.
[16] ABACHIZADEH M, YAZDI M, YOUSEFI-KOMA A. Optimal tuning of PID controllers using artificial bee colony algorithm[C]//2010 IEEE/ASME International Conference on Advanced Intelligent. Montreal:IEEE Press, 2010:379-384.
[17] LARRANAGA P, POZA M, YURRAMENDI Y. et al. Structure learning of Bayesian networks by genetic algorithms:a performance analysis of control parameters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9):912-926.
[18] 许丽佳, 黄建国, 王厚军, 等. 混合优化的贝叶斯网络结构学习[J]. 计算机辅助设计与图形学报, 2009, 21(5):633-639. XU Lijia, HUANG Jianguo, WANG Houjun, et al. Hybrid optimized algorithm for learning Bayesian network structure[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(5):633-639.
[19] CHOW C, LIU C. Approximation discrete probability distributions with dependence trees[J]. IEEE Transactions on Information Theory, 1968, 14(3):462-467.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems