[1]LUO Minxia,SANG Ni,HE Huacan.The reverse triple I algorithms based on a class of residual implications induced by the family of SchweizerSklar tnorms[J].CAAI Transactions on Intelligent Systems,2012,7(6):494-500.
Copy

The reverse triple I algorithms based on a class of residual implications induced by the family of SchweizerSklar tnorms

References:
[1]裴道武. 关于模糊逻辑与模糊推理逻辑基础问题的十年研究综述[J]. 工程数学学报, 2004, 21 (2): 249258.
PEI Daowu. A survey of ten years′ studies on fuzzy logic and fuzzy reasoning[J]. Journal of Engineering Mathmatics, 2004, 21 (2): 249258.
[2]王国俊. 模糊推理的全蕴涵三I 算法[J]. 中国科学: E辑, 1999, 29 (1): 4353.
[3]宋世吉, 吴澄. 模糊推理的反向三I 算法[J]. 中国科学: E辑, 2002, 32 (2): 230246.
[4]LIU H W. The correct expressions of reverse triple I method for fuzzy reasoning[J]. Fuzzy Information and Engineering,2009, 62 (2): 14891499.
[5]彭家寅, 侯健, 李洪兴. 基于某些常见蕴涵算子的反向三I 算法[J]. 自然科学进展, 2005, 15 (4): 404410.
[6]SCHWEIZER B, SKLAR A. Associative functions and statistical triangle inequalities[J]. Publicationes Mathematicae Debrecen, 1961, 8: 169186.
[7]SCHWEIZER B, SKLAR A. Associative functions and abstract semigroups[J]. Publicationes Mathematicae Debrecen, 1963, 10: 6981.
[8]WHALEN T. Parameterized Rimplications [J]. Fuzzy Sets and Systems, 2003, 134 (2): 231281.
[9]张小红, 何华灿, 徐扬. 基于SchweizerSklar T范数的模糊逻辑系统[J]. 中国科学: E辑, 2005, 35 (12): 13141326.
[10]〖JP3〗谷敏强, 刘智斌. 基于SchweizerSklar 算子的模糊推理模型的连续性[J]. 应用数学学报, 2010, 33(3): 532546.
GU Minqiang, LIU Zhibin. On the continuity of the fuzzy reasoning models based on SchweizerSklar operations[J]. Acta Mathematicae Applicatae Sinica, 2010, 33(3): 532546.
[11]姚宁.基于一致范数的逻辑系统的研究[D].杭州:中国计量学院, 2011: 1527.
Similar References:

Memo

-

Last Update: 2013-03-19

Copyright © CAAI Transactions on Intelligent Systems