[1]ZHAO Wenqing,HOU Xiaoke.News topic recognition of Chinese microblog based on word cooccurrence graph[J].CAAI Transactions on Intelligent Systems,2012,7(5):444-449.
Copy

News topic recognition of Chinese microblog based on word cooccurrence graph

References:
[1]MORI M, MIURA T, SHIOYA I. Topic detection and tracking for news web pages[C]//Proceedings of the 2006 ACM International Conference on Web Intelligence. Washington, DC, USA, 2006: 338342.
[2]ALLAN J, CARBONELL J, DODDINGTON G, et al. Topic detection and tracking pilot study: final report[C]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. San Francisco, USA: Morgan Kaufmann Publisher Inc, 1998: 194218.
[3]路荣,项亮,刘明荣,等.基于隐主题分析和文本聚类的微博客新闻话题发现[J].模式识别与人工智能, 2012, 25(3): 382387.
LU Rong, XIANG Liang, LIU Mingrong, et al. Discovering news topics from microblogs based on hidden topics analysis and text clustering[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3): 382387.
[4]LIU Zitao, YU Wenchao, CHEN Wei, et al. Short text feature selection for microblog mining[C]//The 4th International Conference on Computational Intelligence and Software Engineering. Wuhan, China, 2010: 14.
[5]金春霞,周海岩.动态向量的中文短文本聚类[J].计算机工程与应用, 2011, 47(33): 156158. 
JIN Chunxia, ZHOU Haiyan. Chinese short text clustering based on dynamic[J]. Computer Engineering and Applications, 2011, 47(33): 156158.
[6]郑斐然,苗夺谦,张志飞,等.一种中文微博新闻话题检测的方法[J].计算机科学, 2012, 39(1): 138141. 
ZHENG Feiran, MIAO Duoqian, ZHANG Zhifei, et al. News topic detection approach on Chinese microblog[J]. Computer Science, 2012, 39(1): 138141.
[7]杨震,段立娟,赖英旭.基于字符串相似性聚类的网络短文本舆情热点发现技术[J].北京工业大学学报, 2010, 36(5): 669673. 
YANG Zhen, DUAN Lijuan, LAI Yingxu. Online public opinion hotspot detection and analysis based on short text clustering using string distance[J]. Journal of Beijing University of Technology, 2010, 36(5): 669673.
[8]张华平.NLPIR微博内容语料库—23万条[EB/OL]. (20120214)[20120520].
http://www.nlpir.org/?actionviewnewsitemid231.2012,02,14/2012,02,18.
[9]张华平.ICTCLAS2012版本SDK发布(u0106版本修正了UTF8下的bug)[EB/OL]. (20111231)[20120520]. http://www.nlpir.org/?actionviewnewsitemid229.2011,12,31/2012,02,18.
[10]彭泽映,俞晓明,许洪波,等.大规模短文本的不完全聚类[J].中文信息学报, 2011, 25(1): 5459. 
PENG Zeying, YU Xiaoming, XU Hongbo, et al. Incomplete clustering for large scale short texts[J]. Journal of Chinese Information Processing, 2011, 25(1): 5459.
[11]常鹏,马辉.高效的短文本主题词抽取方法[J].计算机工程与应用, 2011, 47(20): 126128, 154. 
CHANG Peng, MA Hui. Efficient short texts keyword extraction method analysis[J]. Computer Engineering and Applications, 2011, 47(20): 126128, 154.
[12]TRIVISON D. Term cooccurrence in cited/citing journal articles as a measure of document similarity[J]. Information Processing & Management, 1987, 23(3): 183194.
[13]乔业男,齐勇,侯迪.一种高稳定性词汇共现模型[J].西安交通大学学报, 2009, 43(6): 2427. 
QIAO Yenan, QI Yong, HOU Di. A highly stable term cooccurrence model[J]. Journal of Xi′an Jiaotong University, 2009, 43(6): 2427.
[14]耿焕同,蔡庆生,赵鹏,等.一种基于词共现图的文档自动摘要研究[J].情报学报, 2005, 24(6): 651656. 
GENG Huantong, CAI Qingsheng, ZHAO Peng, et al. Research on document automatic summarization based on word cooccurrence[J]. Journal of The China Society for Scientific and Technical Information, 2005, 24(6): 651656.
[15]常鹏,冯楠,马辉.一种基于词共现的文档聚类算法[J].计算机工程, 2012, 38(2): 213214, 220. 
CHANG Peng, FENG Nan, MA Hui. Document clustering algorithm based on word cooccurrence[J]. Computer Engineering, 2012, 38(2): 213214, 220.
[16]耿焕同,蔡庆生,于琨,等.一种基于词共现图的文档主题词自动抽取算法[J].南京大学学报:自然科学, 2006, 42(2): 156162. 
GENG Huantong, CAI Qingsheng, YU Kun, et al. A kind of automatic text keyphrase extraction method based on word cooccurrence[J]. Journal of Nanjing University: Natural Sciences, 2006, 42(2): 156162.
Similar References:

Memo

-

Last Update: 2012-11-13

Copyright © CAAI Transactions on Intelligent Systems