[1]ZHAO Chunhui,LIU Wei.Compressive sensing theory and its application in imaging technology[J].CAAI Transactions on Intelligent Systems,2012,7(1):21-32.
Copy

Compressive sensing theory and its application in imaging technology

References:
[1]CANDES E J. Compressive sampling[C]//International Congress of Mathematics. Madrid, Spain, 2006, 3: 14331452.
[2]BARANIUK R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4): 118121.
[3]CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 2130.
[4]CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489509.
[5]DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 12891306.
[6]CANDES E J, TAO T. Near optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52 (12): 54065425.
[7]CANDES E J, ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 12071223.
[8]CANDES E J, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 42034215.
[9]TSAIG Y, DONOHO D. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 549571.
[10]CANDES E J, ROMBERG J. Quantitative robust uncertainty principles and optimally sparse decompositions[J]. Foundations of Computational Mathematics, 2006, 6(2): 227254.
[11]CANDES E J, ROMBERG J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2007, 23(3): 969985.
[12]TAKHAR D, LASKA J N, WAKIN M B, et al. A new compressive imaging camera architecture using opticaldomain compression[C]//Proceedings of Computational Imaging IV at SPIE Electronic Imaging. San Jose, USA, 2006: 606509.
[13]WAKIN M B, LASKA J N, DUARTE M F, et al. An architecture for compressive imaging[C]//IEEE International Conference on Image Processing. Atlanta, USA, 2006: 12731276.
[14]DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Singlepixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 8391.
[15]DEVORE R. Nonlinear approximation[J]. Acta Numerica, 1998, 7: 51150.
[16]DONOHO D, VETTERLI M, DEVORE R, et al. Data compression and harmonic analysis[J]. IEEE Transactions on Information Theory, 1998, 44(6): 24352476.
[17]石光明,刘丹华,高大化,等.压缩感知理论及其研究进展[J].电子学报, 2009, 37(5): 10711081.
SHI Guangming, LIU Danhua, GAO Dahua, et al. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5): 10711081.
?[18]BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge, USA: Cambridge University Press, 2004.
[19]CHEN S, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit[J]. SIAM Journal of Scientific Computing, 1998, 20(1): 3361.
[20]KIROLOS S, LASKA J N, WAKIN M B, et al. Analogtoinformation conversion via random demodulation[C]//IEEE Dallas Circuits and Systems Workshop (DCAS) on Design, Applications, Integration and Software. Dallas, USA, 2006: 7174.
[21]LASKA J N, KIROLOS S, MASSOUD Y, et al. Random sampling for analogtoinformation conversion of wideband signals[C]//IEEE Dallas Circuits and Systems Workshop (DCAS) on Design, Applications, Integration and Software. Dallas, USA, 2006: 119122.
[22]LASKA J N, KIROLOS S, DUARTE M F, et al. Theory and implementation of an analogtoinformation converter using random demodulation[C]//IEEE International Symposium on Circuits and Systems (ISCAS). New Orleans, USA, 2007: 19591962.
[23]MISHALI M, ELDAR Y C. Blind multiband signal reconstruction: compressed sensing for analog signals[J]. IEEE Transactions on Signal Processing, 2009, 57(30): 9931009.
[24]MISHALI M, ELDAR Y C. From theory to practice: subNyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics on Signal Processing, 2010, 4(2): 375391.
[25]HAUPT J, NOWAK R. Compressive sampling vs. conventional imaging[C]//IEEE International Conference on Image Processing. Atlanta, USA, 2006: 12691272.
[26]ROMBERG J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 1420.
[27]CHAN W, CHARAN K, TAKHAR D, et al. A singlepixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93 (12): 121105.
[28]HEIDARI A, SAEEDKIA D. A 2D camera design with a singlepixel detector[C]//The 34th International Conference on Infrared, Millimeter, and Terahertz Waves. Busan, ROK, 2009: 12.
[29]GAN L. Block compressed sensing of natural images[C]//Proceedings of the 15th International Conference on Digital Signal Processing. Cardiff, UK, 2007: 403406.
[30]GAN L, DO T T, TRAN T D. Fast compressive imaging using scrambled block Hadamard ensemble[C/OL]. [20111015].http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/scrambled_blk_WHT.pdf.
[31]MUN S, FOWLER J. Block compressed sensing of images using directional transforms[C]//Proceedings of the International Conference on Image Processing. Cairo, Egypt, 2009: 30213024.
[32]NAGESH P, LI B. Compressive imaging of color images[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009). Taipei, China, 2009: 12611264.
[33]WAKIN M B, LASKA J N, DUARTE M F, et al. Compressive imaging for video representation and coding[C]//Proceedings of the Picture Coding Symposium (PCS). Beijing, China, 2006: 20462051.
[34]〖JP4〗STANKOVIC V, STANKOVIC L, CHENG S. Compressive video sampling[C/OL]. [20111015]. http://www.eurasip.org/Proceedings/Eusipco/Eusipco2008/papers/1569099804.pdf.
[35]SANKARANARAYANAN A C, TURAGA P K, BARANIUK R G, et al. Compressive acquisition of dynamic scenes[C]//Proceedings of the 11th European Conference on Computer Vision. Berlin/Heidelberg, Germany: SpringerVerlag, 2010: 129142.
[36]CEVHER V, SANKARANARAYANAN A C, DUARTE M F, et al. Compressive sensing for background subtraction[C]//Proceedings of the 10th European Conference on Computer Vision. Marseille, France, 2008: 155168.
[37]TAUBMAN D S, MARCELLIN M W. JPEG 2000: image compression fundamentals, standards and practice[M]. Norwell, USA: Kluwer Academic Publishers, 2001.
[38]PEYR G. Best basis compressed sensing[J]. Lecture Notes in Computer Science, 2007, 4485: 8091.
?[39]KREUTZDELGADO K, RAO B D. FOCUSSbased dictionary learning algorithms[C]//Wavelet Applications in Signal and Image Processing VIII. San Diego, USA, 2000: 459473.
[40]MAIRAL J, SAPIRO G, ELAD M. Multiscale sparse image representation with learned dictionaries[C]//The 14th IEEE International Conference on Image Processing. San Antonio, USA, 2007, 3: 105108.
[41]PEYR G. Nonnegative sparse modeling of textures[C]//Proceedings of the 1st International Conference on Scale Space and Variational Methods in Computer Vision. Ischia, Italy, 2007: 628639.
[42]JOST P, VANDERGHEYNST P, LESAGE S, et al. MoTIF: an efficient algorithm for learning translation invariant dictionaries[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, France, 2006: 857860.
[43]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报, 2006, 51(6): 628633.
[44]TEMLYAKOV V N. Nonlinear methods of approximation[J]. Foundations of Computational Mathematics, 2003, 3(1): 33107.
[45]傅霆.医学信号与图像的多尺度分析方法研究[D].成都:电子科技大学, 2003. FU Ting. Multiscale analysis research on biomedical signal and image processing[D]. Chengdu: University of Electronic Science and Technology of China, 2003.
[46]MALLAT S G, ZHANG Zhifeng. Matching pursuits with timefrequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 33973415.
[47]CHEN S, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit[J]. SIAM Journal of Scientific Computing, 1998, 20(1): 3361.
[48]DONOHO D, HUO X. Uncertainty principles and ideal atomic decompositions[J]. IEEE Transactions on Information Theory, 2001, 47(7): 28452862.
[49]刘巍,赵春晖.基于2DDCT等效矩阵的压缩成像[J].仪器仪表学报, 2010, 31(7): 15761582.
?LIU Wei, ZHAO Chunhui. Compressive imaging using 2DDCT equivalent matrix[J]. Chinese Journal of Scientific Instrument, 2010, 31(7): 15761582.
[50]DONOHO D. For most large underdetermined systems of linear equations the minimal l1norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797829.
[51]DONOHO D. For most large underdetermined systems of equations, the minimal l1norm nearsolution approximates the sparsest nearsolution[J]. Communications on Pure and Applied Mathematics, 2006, 59(7): 907934.
[52]GILBERT A C, GUHA S, INDYK P, et al. Nearoptimal sparse Fourier representations via sampling[C]//Proceedings of the 34th Annual ACM Symposium on Theory of Computing. New York, USA: ACM, 2002: 152161.
[53]BAJWA W U, HAUPT J D, RAZ G M, et al. Toeplitzstructured compressed sensing matrices[C]//Proceedings of the IEEE Workshop on Statistical Signal Processing. Washington, DC, USA, 2007: 294298.
[54]李小波.基于压缩感知的测量矩阵研究[D].北京:北京交通大学, 2010.
?LI Xiaobo. The research of measurement matrix based on compressed sensing[D]. Beijing: Beijing Jiaotong University, 2010.
[55]杨海蓉,张成,丁大为,等.压缩传感理论与重构算法[J].电子学报, 2011, 39(1): 142148.
?YANG Hairong, ZHANG Cheng, DING Dawei, et al. The theory of compressed sensing and reconstruction algorithm[J]. Acta Electronica Sinica, 2011, 39(1): 142148.
[56]NEEDELL D, TROPP J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301321.
[57]KIM S J, KOH K, LUSTIG M, et al. An interiorpoint method for largescale l1regularized leastsquares problems with applications in signal processing and statistics[J]. Journal of Machine Learning Research, 2007, 7(8): 15191555.
[58]FIGUEIREDO M, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007, 1(4): 586598.
[59]DAUBECHIES I, DEFRISE M, DEMOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communication on Pure and Applied and Mathematics, 2004, 57(11): 14131457.
[60]BLUMENSATH T, DAVIES M. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265274.
[61]TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 46554666.
[62]DONOHO D, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[EB/OL]. [20111016]. http://www.cs.tau.ac.il/~idrori/StOMP.pdf.
[63]NEEDELL D, VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3): 317334.
[64]GILBERT A C, MUTHUKRISHNAN S, STRAUSS M J. Improved time bounds for nearoptimal sparse Fourier representation[C]//Proceedings of SPIE: Wavelets XI. San Diego, USA, 2005, 5914: 115.
[65]GILBERT A C, STRAUSS M J, TROPP J A, et al. Algorithmic linear dimension reduction in the l1 norm for sparse vectors[C/OL]. [20111016]. http://users.cms.caltech.edu/~jtropp/conf/GSTV06AlgorithmicLinearAllerton.pdf.
[66]GILBERT A C, STRAUSS M J, TROPP J A, et al. One sketch for all: fast algorithms for compressed sensing[C]//Proceedings of the 39th Annual ACM Symposium on Theory of Computing. New York, USA: ACM, 2007, 7: 237246.
[67]NEEDLE D. Topics in compressed sensing[D]. Davis, CA, USA: University of California Davis, 2009.
[68]RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithm[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 259268.
Similar References:

Memo

-

Last Update: 2012-05-07

Copyright © CAAI Transactions on Intelligent Systems