[1]GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(3):254-260.
Copy

Feature selection of network traffic using a rough set and tabu search

References:
[1]NGUYEN T T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. IEEE Communications Surveys and Tutorials, 2008, 10(4): 5676.
[2]CALLADO A, KAMIENSKI C. A survey on internet traffic identification[J]. IEEE Communications Surveys and Tutorials, 2009, 11(3): 3752.
[3]ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification[J]. Computer Networks, 2009, 53(14): 24762490.
[4]POLAT K, GUNES S. A new feature selection method on classification of medical datasets: kernel Fscore feature selection[J]. Expert Systems with Applications, 2009, 36(7): 1036710373.
[5]PATRICIA E N, ENGELBRECHT A P. A decision rulebased method for feature selection in predictive data mining[J]. Expert Systems with Applications, 2010, 37(1): 602609.
[6]BARALDI P, PEDRONI N, ZIO E. Application of a nicked Pareto genetic algorithm for selecting features for nuclear transients classification[J]. International Journal of Intelligent Systems, 2009, 24(2): 118151.
[7]KIRA K, RENDELL L A. Feature selection problem: traditional methods and a new algorithm[C]//Proceedings of the Tenth National Conference on Artificial Intelligence. San Jose, USA, 1992: 129134.
[8]LI Yongming, ZHANG Sujuan, ZENG Xiaoping. Research of multipopulation agent genetic algorithm for feature selection[J]. Expert Systems with Applications, 2009, 36(7): 1157011581.
[9]HUANG Chenglung, DUN Jianfan. A distributed PSOSVM hybrid system with feature selection and parameter optimization[J]. Applied Soft Computing Journal, 2008, 8(4): 13811391.
[10]ZHANG Li, MENG Xiangru, WU Weijia, et al. Network fault feature selection based on adaptive immune clone selection algorithm[C]//Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization. Sanya, China, 2009: 969973.
[11]SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition[J]. Pattern Recognition Letters, 2003, 24(6): 833849.
[12]殷志伟,张健沛.基于浓缩布尔矩阵的属性约简算法[J].哈尔滨工程大学学报, 2009, 30(3): 307311.
YIN Zhiwei, ZHANG Jianpei.An attribute reduction algorithm based on a concentration Boolean matrix[J]. Journal of Harbin Engineering University, 2009, 30(3): 307311.
[13]THANGAVEL K, PETHALAKSHMI A. Dimensionality reduction based on rough set theory: a review[J]. Applied Soft Computing Journal, 2009, 9(1): 112.
[14]WANG Yong, LI Lin, NI Jun, et al. Feature selection using tabu search with longterm memories and probabilistic neural networks[J]. Pattern Recognition Letters, 2009, 30(7): 661670.
[15]HEDAR A R, WANG J, FUKUSHIMA M. Tabu search〖LL〗for attribute reduction in rough set theory[J]. Soft Computing, 2008, 12(9): 909918.
[16]CHIOU Chiewun, WU Muhcheng. A GAtabu algorithm for scheduling inline steppers in lowyield scenarios[J]. Expert Systems with Applications, 2009, 36(9): 1192511933.
[17]MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[C]//International Conference on Measurement and Modeling of Computer Systems. New York, USA, 2005: 5060.
[18]YANG Y M, PEDERSEN J O. A comparative study on feature selection in text categorization[C]//Proceedings of the Fourteenth International Conference on Machine Learning. Nashville, USA, 1997: 412420.
Similar References:

Memo

-

Last Update: 2011-07-23

Copyright © CAAI Transactions on Intelligent Systems