[1]Mudasser NASEER,QIN Shi yin.Classification and recognition of image/nonimage data based on multinomial logistic regression with nonlinear dimensionality reduction[J].CAAI Transactions on Intelligent Systems,2010,5(1):85-93.
Copy

Classification and recognition of image/nonimage data based on multinomial logistic regression with nonlinear dimensionality reduction

References:
[1]JAMES M. Classification algorithms[M]. New York: John Wiley & Sons Inc, 1985.
[2]ROWEIS S T, SAUL L K, Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290: 23232326.
[3]TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290: 23192323.
[4]BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Neural Computations, 2003, 15(6): 13731396.
[5]COIFMAN R R, LAFON S. Diffusion maps[J]. Applied and Computational Harmonic Analysis, 2006, 21(1): 530.
[6]DONOHO D L, GRIMES C E. Hessian eigenmaps: new locally linear embedding techniques for highdimensional data[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100(10): 55915596.
[7]ZHANG Zhenyue, ZHA Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. SIAM Journal on Scientific Computing, 2004, 26(1): 313338.
[8]BUSA F K, KOCSOR A. Locally linear embedding and its variants for feature extraction[C]//IEEE International Workshop on Soft Computing Applications (SOFA). Szeged, Hungary and Arad, Romania, 2005: 216222.
[9]RIDDER D, DUIN R P W. Locally linear embedding for classification. Delft: PH200201[R]. Pattern Recognition Group, Dept of Image Science & Technology, Delft University of Technology. Delft, Netherlands, 2002.
[10]RIDDER D, KOUROPTEVA O, OKUN O, et al. Supervised locally linear embedding[C]//Proceedings of Artificial Neural Networks and Neural Information Processing (ICANN/ICONIP). Istanbul, Turkey, 2003: 333341.
[11]VLACHOS M, DOMENICONI C, GUNOPULOS D, et al. Nonlinear dimensionality reduction techniques for classification and visualization[C]//Proceedings of 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 645651.
[12]GENG Xin, ZHAN Dechuan, ZHOU Zhihua. Supervised nonlinear dimensionality reduction for visualization and classification[J]. IEEE Transactions on Systems, Man, and CyberneticsPart B: Cybernetics, 2005, 35(6): 10981107.
[13]LI Hongyu, CHEN Wenbin, SHEN Ifan. Supervised local tangent space alignment for classification[C]//Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence. Edinburgh, Scotland, 2005: 16201621.
[14]ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125141.
[15]BENGIO Y, PAIEMENT JF, VINCENT P, et al. Outofsample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering[J]. Advances in Neural Information Processing Systems, 2004(16): 177184.
[16]HO T K. Nearest neighbors in random subspaces[J]. LNCS: Advances in Pattern Recognition, 1998, 1451: 640648. 
?[17]HOSMER D W, LEMESHOW S. Applied logistic regerssion[M]. 2nd ed. New York: John Wiley & Sons Inc, 2000: 128135.
[18]FUKUNAGA K. Introduction to statistical pattern recognition[M]. 2nd ed. San Diago: Academic Press, 1990: 219237.
Similar References:

Memo

-

Last Update: 2010-03-31

Copyright © CAAI Transactions on Intelligent Systems