[1]XIANG Zheng-rong,CHEN Qing-wei.An approach to soft sensor modeling based onwavelets and a least square support vector machine[J].CAAI Transactions on Intelligent Systems,2010,5(1):63-66.
Copy

An approach to soft sensor modeling based onwavelets and a least square support vector machine

References:
[1]徐 敏,俞金寿. 软测量技术[J]. 石油化工自动化, 1998, 2: 13.
?XU Min, YU Jinshou. Softsensing technique[J]. Automation in PetroChemical Industry, 1998, 2: 13.
[2]GONZALEZ G D. Soft sensors for processing plants[C]//Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. Honolulu, Hawaii, USA, 1999: 5969. 
[3]VAPNIK V N. The nature of statistical learning theory [M]. New York: SpringerVerlag, 1995: 123180.
[4]张 莉,席裕庚. 基于支持向量机的可分离非线性动态系统辨识[J]. 自动化学报, 2005, 31(6): 965969. 
ZHANG Li, XI Yugeng. Identification of separable variable nonlinear dynamical system based on SVMs[J]. Acta Automatica Sinica, 2005, 31(6): 965969.
[5]SUYKENS J A K. Nonlinear modeling and support vector machines[C]//Proceedings of Technology of the 18th IEEE Instrumentation and Measurement Conference. Budapest, Hungary, 2001, 1: 287294.
[6]陈念贻, 陆文聪. 支持向量机算法在化学化工中的应用[J]. 计算机与应用化学, 2002, 19(6): 674676. 
CHEN Nianyi, LU Wencong. Support vector machine applied to chemistry and chemical technology[J]. Computer and Applied Chemistry, 2002, 19(6): 674676.
[7]SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293300.
[8]SUYKENS J A K, VAN GESTEL T, DE BRABANTER J, et al. Least squares support vector machines[M]. Singapore: World Scientific Press, 2002: 308342.
[9]XIANG Zhengrong, LIU Songqing. Component content softsensor in rareearth extraction based on PSO and LSSVM[C]//The 4th International Conference on Natural Computation (ICNC’08). Jinan, China, 2008, 6: 392395.
?[10]徐 晔, 杜文莉, 钱 锋. 基于核主元分析和最小二乘支持向量机的软测量建模[J]. 系统仿真学报, 2007, 19(17): 38733875.
?XU Ye, DU Wenli, QIAN Feng. Soft sensor modeling based on KPCA and least square SVM[J]. Journal of System Simulation, 2007, 19(17): 38733875.
[11]张 英, 苏宏业, 褚 健. 基于模糊最小二乘支持向量机的软测量建模[J]. 控制与决策, 2005, 20(6): 621624.
?ZHANG Ying, SU Hongye, CHU Jian. Soft sensor modeling based on fuzzy least squares support vector machines [J]. Control and Decision, 2005, 20(6): 621624.
[12]阎威武, 朱宏栋, 邵惠鹤. 基于最小二乘支持向量机的软测量建模[J]. 系统仿真学报, 2003, 15(10): 14941496.
YAN Weiwu, ZHU Hongdong, SHAO Huihe. Soft sensor modeling based on support vector machines[J]. Journal of System Simulation, 2003, 15(10): 14941496.
[13]刘 涛,曾祥利,曾 军. 实用小波分析入门[M]. 北京: 国防工业出版社, 2006: 116131. [14]SUN Jun, XU Wenbo, FENG Bin. A global search strategy of quantumbehaved particle swarm optimization[C]//Proceedings of IEEE Conference on Cybernetics and Intelligent Systems. Singapore, 2004: 111116.
[15]SUN Jun, FENG Bin, XU Wenbo. Particle swarm optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation. Piscataway, USA, 2004: 325331.
[16]CHAPELLE O, VAPNIK V, BOUSQUET O, et al. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1): 131159.
[17] 许勇刚,杨 辉. 基于RBF网络的稀土萃取过程组分含量软测量[J]. 稀土, 2007, 28(5): 1922.
XU Yonggang, YANG Hui. Component content softsensor based on RBF neural network in rare earth countercurrent extraction process[J]. Chinese Rare Earths, 2007, 28(5): 1922.
Similar References:

Memo

-

Last Update: 2010-04-06

Copyright © CAAI Transactions on Intelligent Systems