[1]LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4(3):199-207.
Copy

Learningbased superresolution reconstruction

References:
[1]HARRIS J L. Diffraction and resolving power[J]. Journal of the Optical Society of America, 1964, 54(7): 931936.
[2]GOODMAN J W. Introduction to Fourier optics[M]. New York: McGrawHill, 1968.
?[3]BROWN H A. Effect of truncation on image enhancement by prolate spheroidal function[J]. Journal of the Optical Society of America, 1969, 59: 228229.
?[4]JAIN A K. Fundamentals of digital image processing[M]. Englewood Cliffs,USA: PrenticeHall, 1989.
?[5]WADAKS S, SATO T. Superresolution in incoherent imaging system[J]. Journal of the Optical Society of America, 1975, 65(3): 354355.
?[6]TSAI R Y, HUANG T S. Multipleframe image restoration and registration[C]//Advances in Computer Vision and Image Processing. Greenwich, USA: JAI Press Inc, 1984: 317339.
[7]BAKER S, KANADE T. Hallucinating faces[R]. Pittsburgh,USA:The Robotics Institute, Carnegie Mellon University, 1999.
?[8]BAKER S, KANADE T. Hallucinating faces[C]//IEEE Int Conf on Automatic Face and Gesture Recognition. Grenoble, France, 2000: 8388
[9]BAKER S, KANADE T. Limits on superresolution and how to break them[C]//IEEE Conf on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, 2: 372379.
[10]BAKER S, KANADE T. Superresolution: limits and beyond[M]//CHAUDHURI S. Superresolution imaging. Dordrecht,The Netherlands:Kluwer Academic Press, 2001: 243276.
?[11]BAKER S, KANADE T. Superresolution: reconstruction or recognition[C]//IEEEEURASIP Workshop on Nonlinear Signal and Image Processing. Baltimore, USA, 2001:215219.
[12]BAKER S, KANADE T. Limits on superresolution and how to break them[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(9): 11671183.
[13]FREEMAN W T, JONES T R, PASZTOR E C. Examplebased superresolution[J]. IEEE Computer Graphics and Applications, 2002, 22(2): 5665.
[14]BISHOP C M, BLAKE A, MARTHI B. Superresolution enhancement of video[C]//International Conference on Artificial Intelligence and Statistics. Key West, USA, 2003:410414.
?[15]SUN Jian, ZHENG Nanning, TAO Hai, et al. Image hallucination with primal sketch priors[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, 2: 729736.
[16]CHANG H, YEUNG D Y, XIONG Y. Superresolution through neighbor embedding[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC,USA, 2004, 1: 275282.
[17]SU K, TIAN Q, XUE Q,et al. Neighborhood issue in singleframe image superresolution[C]//IEEE International Conference on Multimedia and Expo. Amsterdam, The Netherlands, 2005: 14.
[18]TAI Y W,TONG W S, TANG C K. Perceptuallyinspired and edgedirected color image superresolution[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA, 2006, 2: 19481955.
[19]JOSHI M V, CHAUDHURI S, PANUGANTI R. A learningbased method for image superresolution from zoomed observations[J]. IEEE Transactions on Systems, Man and Cybernetics, 2005, 35(3): 527537.
[20]GUNTURK B K,BATUR A U, ALTUNBASAK Y, et al. Eigenfacebased superresolution for face recognition [C]//IEEE International Conference on Image Processing. Rochester, USA, 2002, 2: 845848.
[21]GUNTURK B K, BATUR A U, ALTUNBASAK Y,et al. Eigenfacedomain superresolution for face recognition [J]. IEEE Transactions on Image Processing, 2003, 12(5): 597606.
[22]LIU Ce, SHUM H Y, ZHANG Changshui. A twostep approach to hallucinating faces: global parametric model and local nonparametric model[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii, USA, 2001, 1: 192198
[23]LIN Dahua, LIU Wei, TANG Xiaoou. Layered local prediction network with dynamic learning for face superresolution[C]//IEEE International Conference on Image Processing. Genova, Italy, 2005, 1: 885888.
[24]GUPTA M D, RAJARAM S, PETROVIC N,et al. Restoration and recognition in a loop[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, 1: 638644.
[25]JIA Kui, GONG Shaogang. Multiresolution patch tensor for facial expression hallucination[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, 1: 395402.
[26]PENG Shiqi, PAN Gang, WU Zhaohui. Learningbased superresolution of 3D face model[C]//IEEE International Conference on Image Processing. Genova, Italy, 2005, 2: 382385.
?[27]WANG Xiaogang, TANG Xiaoou. Hallucinating face by eigentransformation[J]. IEEE Trans on Systems, Man and Cybernetics, 2005, 35(3): 425434.
[28]LEE D D, COGNITION H S. The manifold ways of perception[J]. Science, 2000, 290(5500): 22682269.
[29]TENENBAUM J B, SILVAM V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 23192323.
[30]ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 23232326.
[31]BALASUBRAMANIAN M, SCHWARTZ E L, TENENBAUM J B. The Isomap algorithm and topological stability [J]. Science, 2002, 295(5552):7.
[32]MING Chantak, ZHANG Junping. An improved superresolution with manifold learning and histogram matching [C]//Proceedings of IAPR International Conference on Biometric, LNCS3832. Berlin: SpringerVerlag, 2006: 756762.
[33]PARK S W, SAVVIDES M. Breaking the limitation of manifold analysis for superresolution of facial images [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu, USA, 2007, 1: 573576.
[34]QIAO Jianping, LIU Ju, CHEN Yenwei. Joint blind superresolution and shadow removing[J]. IEICE Transactions on Information and Systems, 2007, E90D(12): 20602069.
[35]LIU Y H, CHEN Y T. Face recognition using total marginbased adaptive fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2007, 18(1): 178192.
[36]WANG Yongqiao, WANG Shouyang, LAI K K. A new fuzzy support vector machine to evaluate credit risk[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(6): 820831.
[37]JUANG C F, CHIU S H, SHIU S J. Fuzzy system learned through fuzzy clustering and support vector machine for human
[38]WASKE B, BENEDIKTSSON J A. Fusion of support vector machines for classification of multisensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 38583866.
[39]ZAFEIRIOU S, TEFAS A, PITAS I. Minimum class variance support vector machines[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2551 2564.
[40]OSUNA E, FREUND R, GIROSI F. Training support vector machines: an application to face detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Juan,Puerto Rico,1997: 130136.
[41]LI Dalong, MERSEREAU R M, SIMSKE S. Blind image deconvolution using support vector regression[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing.Philadelphia, USA, 2005, 2: 113116.
?[42]乔建苹,刘 琚.基于支持向量机的盲超分辨率图像复原算法[J]. 电子学报,2007, 35(10): 4248.
?QIAO Jianping,LIU Ju.A SVMbased blind superresolution image restoration algorithm[J].Chinese Journal of Electronics,2007,35(10):4248.
[43]COMON P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3): 287314.
[44]刘 琚, 何振亚. 盲源分离和盲反卷积[J]. 电子学报, 2002, 30(4): 570576.
?LIU Ju,HE Zhenya.A survey of blind source separation and blind deconvolution[J].Acta Electronica Sinica,2002,30(4):570576. 
[45]LIU Ju, QIAO Jianping. Face hallucination based on independent component analysis[C]//IEEE International Symposium on Circuits and Systems. Seattle, USA, 2008, 1: 32423245.
Similar References:

Memo

-

Last Update: 2009-08-31

Copyright © CAAI Transactions on Intelligent Systems