[1]WEN Gui-hua,J IANG L i-jun,WEN Jun.Using locally estimated geodesic distances to improve Hessian local linear embedding[J].CAAI Transactions on Intelligent Systems,2008,3(5):429-435.
Copy

Using locally estimated geodesic distances to improve Hessian local linear embedding

References:
[ 1 ]TENENBAUM J B, De SILVA V, LANGFORD J C. A glob2 al geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000, 290 (12) : 231922323.
?[ 2 ]ROWEIS S T, SAUL L K. Nonlinear dimensionality reduc2 tion by locally linear embedding [ J ]. Science, 2000, 290 (12) : 231922323.
?[ 3 ]BELKIN M, N IYOGI P. Lap lacian eigenmap s for dimen2 sionality reduction and data rep resentation [ J ]. Neural Com2 puting, 2003, 15 (6) : 137321396.
[ 4 ]DONOHO D L, GR IMES C. Hessian eigenmap s: locally linear embedding, techniques for high2dimensional data[ J ]. PNAS, 2003, 100 (10) : 5912596.
[ 5 ]De R IDDER D, KOUROPTEVA O, OKUN O, et al. Super2 vised locally linear embedding [ C ] / /Artificial Neural Net2 works and Neural Information Processing. Istanbul, Turkey: Sp ringer, 2003: 3332341.
[ 6 ]KOUROPTEVA O, OKUN O, P IETIKA INEN M. Incremen2 tal locally linear embedding[ J ]. Pattern Recognition, 2005, 38 (10) : 1764217671
[ 7 ]De R IDDER D, LOOGM, REINDERSM J T. Local fisher embedding[C ] / /Proceedings of the 17 th International Con2 ference on Pattern Recognition. [ S. l. ] , 2004: 29522981
?[ 8 ]CHANG Hong, YENG Dityan. Robust locally linear embed2 ding[ J ]. Pattern Recognition, 2000, 39 (6) : 105321065.
[ 9 ]YANGL. Building k2connected neighborhood graphs for iso2 metric data embedding[ J ]. IEEE Transactions on Pattern A2 nalysis andMachine Intelligence, 2006, 28 (5) : 8272831.
[ 10 ]YANG L. Building connected neighborhood graphs for lo2 cally linear embedding[ C ] / /18 th International Conference on Pattern Recognition. Hong Kong, China, 2006: 16802 1683.
?[ 11 ]VAR IN I C, DEGENHARD A, NATTKEMPER T W.   ISOLLE: LLE with geodesic distance[ J ]. Neurocomputing, 2006, 69 (15) : 176821771.
?[ 12 ]王和勇,郑 杰,姚正安,李 磊. 基于聚类和改进距离的LLE方法在数据降维中的应用[ J ]. 计算机研究与发展, 2006, 43 (8) : 148521490.
?WANG Heyong, ZHENG J ie, YAO Zhengan, L ILei. Ap2 p lication of dimension reduction on using imp roved LLE based on clustering[ J ]. Journal of Computer Research and Development, 2006, 43 (8) : 148521490.
[ 13 ]WEN Guihua, J IANG L ijun, WEN Jun, N IGEL R S. Clustering2based nonlinear dimensionality reduction on manifold [ C ] / /Lecture Notes in Artificial Intelligence (LNA I). Sp ringer, 2006: 4442453.
?[ 14 ]文贵华、江丽君,文 军. 基于邻域优化的局部线性嵌入 [ J ]. 系统仿真学报, 2007, 19 (13) : 311923122.
?WEN Guihua, J IANGL ijun, WEN Jun. Locally linear em2 bedding based on op timization of neighborhood [ J ]. Journal of System Simulation, 2007, 19 (13) : 311923122.
?[ 15 ]WEN Guihua, J IANGL ijun , N IGEL R S. Using graph al2 gebra to op timize neighborhood for Isometric mapp ing [C ] / /20 th International Joint Conference on Artificial In2 telligence ( IJCA I207). India, 2007: 239822403.
[ 16 ] SAMKO O, MARSHALL A D, ROSIN P L. Selection of the op timal parameter value for the Isomap algorithm [ J ]. Pattern Recognition Letters, 2006, 27 (9) : 9682979.
[ 17 ]文贵华,江丽君,文 军. 邻域参数动态变化的局部线性嵌入[ J ]. 软件学报, 2008, 19 (7) : 166621673.
WEN Guihua, J IANGL ijun, WEN Jun. Dynamically deter2 mining neighborhood parameter for locally linear embedding [ J ]. Journal of Software, 2008, 19 (7) : 166621673.
?[ 18 ]WEN Guihua, J IANG L ijun. Globalizing local neighbor2 hood for locally linear embedding [ C ] / /Proceedings of 2006 IEEE International Conference on System, Man and Cybernetics. Taibei, China, 2006: 349123496.
?[ 19 ]De R IDDER D,LOOGM, REINDERSM J T. Local fisher embedding [ C ] / /Proceedings of the 17 th International Conference on Pattern Recognition. Cambridge, UK, 2004: 2952298.
[ 20 ] HONG Chang, YEUND Yang. Robust locally linear em2 bedding[ J ]. Pattern Recognition, 2003, 39 ( 6 ) : 10532 1065
Similar References:

Memo

-

Last Update: 2009-05-18

Copyright © CAAI Transactions on Intelligent Systems