[1]LI Fa-jie,KLETTE Reinhard.Shortest path algorithms for sequences of polygons[J].CAAI Transactions on Intelligent Systems,2008,3(1):23-30.
Copy

Shortest path algorithms for sequences of polygons

References:
[1] BULOW T,KLETTE R.Digital curves in 3D space and a lineartime length estimation algorithm[J].IEEE Trans Pattern Analysis Machine Intelligence, 2002,24(7):962 -970.
[2]LI F,KLETTE R.Exact and approximate algorithms for the calculation of short est paths[R].IMA Minneapolis 2006.www.ima.umn.edu/preprints/oct2006.
[3]DROR M,EFRAT A,LUBIW A,et al.Touring a sequence of polygons[C]// Proc STOC.San Diego,USA,2003.
[4]HOEFT J,PALEHAR U S.Heuristics for the platecutting traveling salesman pro blem[J].IIE Transactions, 1997,29(9):719-731.
[5]LAWLER E,LENSTRA J,RINNOOY K A,et al.The traveling salesman problem[M] .New York:John Wiley and Sons, 1985 .
[6]LAPORTE G,MERCURE H,NOBERT Y.Generalized traveling salesman problem throu gh n clusters[J].Discrete Applied Mathematics, 1987,18(2):185-197.
[7]NOON C E,BEAN J C.An ecient transformation of the generalized traveling salesman problem[J].INFOR, 1993,31:39-44.
[8]GAREY M R,GRAHAM R L,JOHNSON D S.Some NPcomplete geometric problems[C] // Proc ACM Sympos Theory Computing.Hershey,USA,1976.
[9]GEOFFRION A M.Lagrangean relaxation and its uses in integer programming[J ].Mathematical Programming Study,1974(2):28-114.
[10]GUIGNARD M,KIM S.Lagrangean decomposition:amodel yielding s tronger Lagran gean bounds[J].Mathematical Programming, 1987,31(3):271-274.
[11]DROR M.Polygon platecutting with a given order[J].IIE Transact ions, 19 99,31(3):271-274
[12]MITCHELL J S B,SHARIR M.New results on shortest paths in th ree dimensions [C]// Proc SCG Brooklyn.New York,2004.
[13]CANNY J,REIF J H.New lower bound techniques for robot motion planning pro blems[C]// Proc IEEE Conf Foundations Computer Science.Los Angeles,USA,1987 .
Similar References:

Memo

-

Last Update: 2009-05-09

Copyright © CAAI Transactions on Intelligent Systems