[1]SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(2):40-47.
Copy

Rough set theory and its application in the intelligent systems

References:
[1]PAL S, SKOWRON A. Rough fuzzy hybridization: a new trend in de cision making[M]. Singapore: SpringerVerlag, 1999.
[2]WALCZAK B, MASSART D L. Rough sets theory[J]. Chemometrics and Int elligent Laboratory Systems,1999, 47:1-16.
[3]YAO Y Y.Constructive and algebraic methods of the theory of rough s ets[J]. Journal of Information Sciences,1998, 109:21-47.
[4]WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of fuzzy ap proximation operators[J]. Information Sciences,2004, 159 : 233-254.
[5]PAWLAK Z. Rough set approach to knowledge-based decision support[J]. Eur opean Journal of Operational Research,1997, 99: 48-57.
[6]PAWLAK Z. Rough sets and intelligent data analysis[J]. Information Scien ces,2002,147:1-12.
[7]LINGRAS P J, YAO Y Y. Data mining using extensions of the rough set model[ J]. Journal of the American Society for Information Science, 1998,49(5):415-422.
[8]黄金杰.粗糙集理论在智能信息处理机控制中的应用研究[D].哈尔滨:哈尔滨工业大学,2004.
 HUANG Jinjie.Research and application of rough sets theory in the control of int elligent information processor[D].Harbin:Harbin Institute of Technology,2004.
[9]YAO Y Y. Two views of the theory of rough sets in finite universes[ J]. International Journal of Approximate Reasoning, 1996, 15(2): 291-317.
[10]张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社, 2005.
[11]KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J] . Information Sciences, 1998, 112(1): 39-49.
[12]GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria de cision analysis[J]. European Journal of Operational Research, 2001, 129(1): 1- 47.
[13]HU Qinghua, YU Daren, XIE Zongxia. Informationpreserving hybrid da ta red uction based on fuzzy-rough techniques[J]. Pattern Recognition Letters, 2006, 27(5): 414-423.
[14]YAO Yiyu, CHEN Yaohua. Subsystem based generalizations of rough set a ppro ximations[A]. Proceedings of 15th International Symposium on Methodologies for Intelligent Systems[C].Berlin, 2005.
[15]YAO Y Y. Relational interpretations of neighborhood operators and rough s et approximation operators[J]. Information Sciences, 1998, 111(1-4): 239-259. 
[16]SLOWINISKI R. Intelligent Decision Support[M]. Dordrecht: Kluwer Academ ic, 1992.
[17]GUAN J W, BELL D A. Rough computational methods for information systems a rtificial intelligence[J]. 1998, 105(1): 77-103.
[18]王国胤,于 洪,杨大春.基于条件信息熵的决策表约简[J].计算机学报, 2002, 25(7):759-766.
WANG Guoyin, YU Hong, YANG Dachun. Decision table reduction based on conditio nal information entropy[J]. Chinese J Computers, 2002, 25(7): 759-766.
[19]JAKUB W. Finding minimal reducts using genetic algorithm[R]. ICS Research Report 16/95, Warsaw university of Technology, 1995
[20]乔 斌,李玉榕,蒋静坪.粗糙集理论的分层递阶约简算法及其信息论基础[ J].控制理论与应用,2004,21(2):195-199.
 QIAO Bin, LI Yurong, JIANG Jingping. Hierarchical reduction approach of rough se ts theory and its basis on the information theory[J]. Control Theory & Applica tion, 2004, 21(2): 195-199.
[21]MITRA S, SANKAR K P, MITRA P. Data mining in soft computing framew ork: a survey[J]. IEEE Transactions on Neural Networks, 2002, 13(1): 3-14.
[22]BANERJEE M, MITRA S, SANKAR K P. Rough fuzzy MLP: knowledge encoding and c lassification[J]. IEEE Transactions on Neural Networks, 1998, 9(6):1203-1216. 
[23]GARDNER M W, DORLING S R. Artificial neural networks (the multilayer perc eptron)a review of applications in the atmospheric sciences[J]. Atmospheric Environment, 1998, 32(14-15): 2627-2636.
[24]AHN B S, CHO S S, KIM C Y. The integrated methodology of rough set theory and artificial neural network for business failure prediction[J]. Expert Syst ems with Application,2000, 18 (4): 65-74.
[25]HU Qinghua, YU Daren, XIE Zongxia. Improvement on classification performa nce based on multiple reduct ensemble[A]. Proceedings of the 2004 IEEE Confere nce on Cybernetics and Intelligent Systems[C]. Singapore, 2004.
[26]DIMITRAS A I, SLOWINSKI R, SUSMAGA R, et al. Business failure predictio n using rough sets[J]. European Journal of Operational Research, 1999, 114(2): 263-280.
[27]GAO Yun, HOU Yuanbin. Application of rough set theory on system modeling [A]. Proceedings of the 5th World Congress on Intelligent Control and Automati on[C]. Hangzhou,2004.
[28]LINGRAS P J. Rough neural networks[A]. Proc of sixth international c onference on information processing and management of uncertainty in knowledge b ased systems[C]. Granada, Spain, 1996.
[29]LINGRAS P. Comparison of neofuzzy and rough neural networks[J]. Informa tion Sciences, 1998,110(3): 207-215.
[30]LIU Hongjian, TUO Hongya, LIU Yuncai. Rough neural network of variable pr ecision[J]. Neural Processing Letters, 2004, 19(1): 73-87,.
[31]何 明,李 博,马兆丰,等.粗糙集理论框架下的神经网络建模研究及应用[J].控制与决策,2005, 20(7): 782-785.
 HE Ming, LI Bo, MA Zhaofeng,et al. On the neural network modelling with su pport rough set theory[J]. Control and Decision, 2005, 20(7): 782-785.
[32]AN A, SHAN Ning, CHAN C, et al. Discovering rules for water dema nd prediction: an enhanced roughset approach[J]. Engng Applic Artif Intell, 1 996, 9(6): 645-653.
[33]TSUMOTO S. Automated extraction of medical expert system rules from clini cal databases based on rough set theory[J]. Information Sciences, 1998, 112(1) : 67-84.
[34]SHEN Lixiang, FRANCIS E H T, QU Liangsheng, et al. Fault diagnosis using rough sets theory[J]. Computers in Industry, 2000, 43(1): 61-72.
Similar References:

Memo

-

Last Update: 2009-05-06

Copyright © CAAI Transactions on Intelligent Systems