[1]SHEN Jing,GU Guo-chang,LIU Hai-bo.Algorithm for automatic constructing Option based on multi-agent[J].CAAI Transactions on Intelligent Systems,2006,1(1):84-87.
Copy

Algorithm for automatic constructing Option based on multi-agent

References:
[1] BARTO A G, MAHADEVAN S. Recent advances in hierarchical reinforcement le arni ng[J]. Discrete Event Dynamic Systems: Theory and Applications, 2003,13(4): 41-77.
[2] SUTTON R S, PRECUP D, SINGH S P. Between MDPs and semi-MDPs: a framew ork for temporal abstraction in reinforcement learning[J]. Artificial Intelligence, 1 999,112(1): 181-211.
[3] PARR R. Hierarchical control and learning for Markov decision processes [D]. Berkeley: University of California, 1998.
[4] DIETTERICH T G. Hierarchical reinforcement learning with the MAXQ value func tion decomposition[J]. Journal of Artificial Intelligence Research, 2000,13(1) : 227-303.
[5] DIGNEY B L. Learning hierarchical control structures for multiple tas ks and changing environments[A]. Proc of the 5th International Conference on Simulat ion of Adaptive Behavior[C]. Zurich, Switzerland, 1998.
[6] MCGOVERN A, BARTO A. Autonomous discovery of subgoals in reinforcem ent learn ing using diverse density[A]. Proc of the 8th International Conference on Mac hine Learning[C]. San Fransisco: Morgan Kaufmann, 2001.
[7] MENACHE I, MANNOR S, SHIMKIN N. Qcut: dynamic discovery of sub-goal s in rei nforcement learning[A]. Proc the 13th European Conference on Machine Learning [C]. Helsinki, Finland, 2002.
[8] MANNOR S, MENACHE I, HOZE A, et al. Dynamic abstraction in reinforce ment lea rning via clustering[A]. Proc of the 21th International Conference on Machine Learning[C]. Banff, Canada, 2004.
[9] DE CASTRO L N, VON ZUBEN F N. An evolutionary immune network for data cluste ring[A]. Proc of the IEEE Brazilian Symposium on Artificial Neural Networks[ C]. Rio de Janeiro, Brazil, 2000.
Similar References:

Memo

-

Last Update: 2009-04-07

Copyright © CAAI Transactions on Intelligent Systems