[1]WANG Junhe,JIANG Yong.Dynamic assembly algorithm based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2023,18(1):2-11.[doi:10.11992/tis.202201006]

Dynamic assembly algorithm based on deep reinforcement learning

[1] LI Fengming. Robot skill acquisition in assembly process using deep reinforcement learning[J]. Neurocomputing, 2019, 345: 92–102.
[2] WANG Zichen, YANG Xiansheng, HU Haopeng, et al. Actor-critic method-based search strategy for high precision peg-in-hole tasks[C]//2019 IEEE International Conference on Real-time Computing and Robotics. Irkutsk: IEEE, 2019: 458?463.
[3] TE Tang, LIN H C, ZHAO Yu, et al. Autonomous alignment of peg and hole by force/torque measurement for robotic assembly[C]//2016 IEEE International Conference on Automation Science and Engineering. Fort Worth: IEEE, 2016: 162?167.
[4] ROURKE J M, WHITNEY D E. Remote center compliance device: US4556203[P]. 1985?12?03.
[5] LEE S. Development of a new variable remote center compliance (VRCC) with modified elastomer shear pad (ESP) for robot assembly[J]. IEEE transactions on automation science and engineering, 2005, 2(2): 193–197.
[6] MOL N, SMISEK J, BABU?KA R, et al. Nested compliant admittance control for robotic mechanical assembly of misaligned and tightly toleranced parts[C]//2016 IEEE International Conference on Systems, Man, and Cybernetics. Budapest: IEEE, 2016: 2717?2722.
[7] HE Gang, SHI Shicai, WANG Da, et al. A strategy for large workpiece assembly based on hybrid impedance control[C]//2019 IEEE International Conference on Mechatronics and Automation. Tianjin: IEEE, 2019: 799?804.
[8] FORTE D, UDE A, KOS A. Robot learning by Gaussian process regression[C]//19th International Workshop on Robotics in Alpe-Adria-Danube Region. Budapest: IEEE, 2010: 303?308.
[9] BHATTACHARYA S, DUTTA S, MAITI T K, et al. Machine learning algorithm for autonomous control of walking robot[C]//2018 International Symposium on Devices, Circuits and Systems. Howrah: IEEE, 2018: 1?4.
[10] FINN C, LEVINE S. Deep visual foresight for planning robot motion[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 2786?2793.
[11] NEMEC B, ?LAJPAH L, UDE A. Door opening by joining reinforcement learning and intelligent control[C]//2017 18th International Conference on Advanced Robotics. Hong Kong: IEEE, 2017: 222?228.
[12] XU Jing, HOU Zhimin, WANG Wei, et al. Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks[J]. IEEE transactions on industrial informatics, 2019, 15(3): 1658–1667.
[13] HE Fujun, WANG Xiaozheng, LIU Kai. Research on axle-hole assembly method based on improved DDPG algorithm[C]//2021 5th International Conference on Robotics and Automation Sciences. Wuhan: IEEE, 2021: 182?186.
[14] ROVEDA L, PALLUCCA G, PEDROCCHI N, et al. Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks[J]. IEEE transactions on industrial informatics, 2018, 14(4): 1753–1763.
[15] ZHOU Zhenning, NI Peiyuan, ZHU Xiaoxiao, et al. Compliant robotic assembly based on deep reinforcement learning[C]//2021 International Conference on Machine Learning and Intelligent Systems Engineering. Chongqing: IEEE, 2021: 6?9.
[16] NAGURI C R, BUNESCU R C. Recognition of dynamic hand gestures from 3D motion data using LSTM and CNN architectures[C]//2017 16th IEEE International Conference on Machine Learning and Applications. Cancun: IEEE, 2017: 1130?1133.
[17] WU Zhixuan, MA Nan, CHEUNG Y M, et al. Improved spatio-temporal convolutional neural networks for traffic police gestures recognition[C]//2020 16th International Conference on Computational Intelligence and Security. Guangxi: IEEE, 2020: 109?115.
[18] ZHANG Weihu, LIU Chang. Research on human abnormal behavior detection based on deep learning[C]//2020 International Conference on Virtual Reality and Intelligent Systems. Zhangjiajie: IEEE, 2020: 973?978.
[19] INOUE T, DE MAGISTRIS G, MUNAWAR A, et al. Deep reinforcement learning for high precision assembly tasks[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 819?825.
[20] MA Yanqin, XU De, QIN Fangbo. Efficient insertion control for precision assembly based on demonstration learning and reinforcement learning[J]. IEEE transactions on industrial informatics, 2021, 17(7): 4492–4502.
[21] SUTTON Richard Stuart. Temporal credit assignment in rein-forcement learning[D]. Amherst: University of Mas-sachusetts Amherst, 1984: 93?118.
[22] 车立新, 杨汝清, 顾毅. 220/330kV变电设备高压带电清扫机器人设计[J]. 机器人, 2005, 27(2): 102–107
CHE Lixin, YANG Ruqing, GU Yi. Design of high-voltage hot-line sweeping robot used in 220/330kV substation[J]. Robot, 2005, 27(2): 102–107
[23] 周松. 高压输电线内力及变形分析的有限元法[J]. 四川电力技术, 1995, 18(2): 6–10
ZHOU Song. Finite element method for analysis of internal force and deformation of High voltage transmission lines[J]. Sichuan electric power technology, 1995, 18(2): 6–10
[24] 魏永乐, 房立金. 双臂巡检机器人沿输电线路行走特性研究[J]. 北京理工大学学报, 2019, 39(8): 813–818
WEI Yongle, FANG Lijin. Research on dual-arms inspection robots walking along transmission line[J]. Transactions of Beijing Institute of Technology, 2019, 39(8): 813–818
[25] MATEUS C, BARATA F A, LUíS R. Effects of broken skirts and pollution on voltage distribution for cap and pin glass insulators[C]//2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering. Setubal: IEEE, 2020: 30?35.
Similar References:



Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems