[1]ZHANG Zeyu,WANG Lei,CAI Jingcao,et al.Application analysis of an enhanced Q-learning genetic algorithm in path planning[J].CAAI Transactions on Intelligent Systems,2025,20(6):1493-1504.[doi:10.11992/tis.202504016]
Copy

Application analysis of an enhanced Q-learning genetic algorithm in path planning

References:
[1] 林韩熙, 向丹, 欧阳剑, 等. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用, 2021, 57(18): 38-48.
LIN Hanxi, XIANG Dan, OUYANG Jian, et al. Review of path planning algorithms for mobile robots[J]. Computer engineering and applications, 2021, 57(18): 38-48.
[2] 王梓强, 胡晓光, 李晓筱, 等. 移动机器人全局路径规划算法综述[J]. 计算机科学, 2021, 48(10): 19-29.
WANG Ziqiang, HU Xiaoguang, LI Xiaoxiao, et al. Overview of global path planning algorithms for mobile robots[J]. Computer science, 2021, 48(10): 19-29.
[3] BADAMASI A M, KABIR I K, AHMED G, et al. Autonomous mobile robot path planning techniques: a review: classical and heuristic techniques[J]. IEEE access, 2025, 13: 117999-118022.
[4] 李成进, 王芳. 智能移动机器人导航控制技术综述[J]. 导航定位与授时, 2016, 3(5): 22-26.
LI Chengjin, WANG Fang. Review of navigation control technology of intelligent mobile robot[J]. Navigation positioning and timing, 2016, 3(5): 22-26.
[5] LIU Lixing, WANG Xu, YANG Xin, et al. Path planning techniques for mobile robots: review and prospect[J]. Expert systems with applications, 2023, 227: 120254
[6] TANG Yuexia, ZAKARIA M A, YOUNAS M. Path planning trends for autonomous mobile robot navigation: a review[J]. Sensors, 2025, 25(4): 1206.
[7] 赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903-910.
ZHAO Xiao, WANG Zheng, HUANG Chengkan, et al. Mobile robot path planning based on an improved A* algorithm[J]. Robot, 2018, 40(6): 903-910.
[8] SHENG Zhaokang, SONG Tingqiang, SONG Jiale, et al. Bidirectional rapidly exploring random tree path planning algorithm based on adaptive strategies and artificial potential fields[J]. Engineering applications of artificial intelligence, 2025, 148: 110393.
[9] 曲胜, 许志远, 张晓鹏, 等. 基于改进RRT算法的无人船路径规划研究[J]. 中国航海, 2024, 47(4): 175-180.
QU Sheng, XU Zhiyuan, ZHANG Xiaopeng, et al. Research on unmanned ship path planning based on improved RRT algorithm[J]. Navigation of China, 2024, 47(4): 175-180.
[10] XIAO Qianxi, CAI Jiejin. The path-planning in radioactive environment based on HIOSD-PRM method[J]. Annals of nuclear energy, 2022, 171: 109018.
[11] 王豪, 赵学军, 袁修久. 基于改进自适应遗传算法的机器人路径规划[J]. 电光与控制, 20, 29(5): 72-76.
WANG Hao, ZHAO Xuejun, YUAN Xiujiu. Robot path planning based on improved adaptive genetic algorithm [J]. Electric light & control, 20, 29(5): 72-76.
[12] MIAO Changwei, CHEN Guangzhu, YAN Chengliang, et al. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J]. Computers & industrial engineering, 2021, 156: 107230.
[13] 卫玉梁, 靳伍银. 基于神经网络Q-learning算法的智能车路径规划[J]. 火力与指挥控制, 2019, 44(2): 46-49.
WEI Yuliang, JIN Wuyin. Intelligent vehicle path planning based on neural network Q-learning algorithm[J]. Fire control & command control, 2019, 44(2): 46-49.
[14] 刘清云, 游雄, 张欣, 等. 移动机器人路径规划算法综述[J]. 计算机科学, 2025, 52(S1): 159-168.
LIU Qingyun, YOU Xiong, ZHANG Xin, et al. Overview of path planning algorithms for mobile robots[J]. Computer science, 2025, 52(S1): 159-168.
[15] QIN Hongwei, SHAO Shiliang, WANG Ting, et al. Review of autonomous path planning algorithms for mobile Robots[J]. Drones, 20, 7(3): 211.
[16] UGWOKE K C, NNANNA N A, ABDULLAHI S E. Simulation-based review of classical, heuristic, and metaheuristic path planning algorithms[J]. Scientific reports, 2025, 15(1): 12643.
[17] 白晓兰, 袁铮, 周文全, 等. 混合遗传算法在机器人路径规划中的应用[J]. 组合机床与自动化加工技术, 2023(11): 15-19.
BAI Xiaolan, YUAN Zheng, ZHOU Wenquan, et al. Application of hybrid genetic algorithm in robot path planning[J]. Modular machine tool & automatic manufacturing technique, 2023(11): 15-19.
[18] HAO Kun, ZHAO Jiale, YU Kaicheng, et al. Path planning of mobile robots based on a multi-population migration genetic algorithm[J]. Sensors, 2020, 20(20): 5873.
[19] 田雅琴, 胡梦辉, 刘文涛, 等. 基于跳点搜索-遗传算法的自主移动机器人路径规划[J]. 工程设计学报, 20, 30(6): 697-706.
TIAN Yaqin, HU Menghui, LIU Wentao, et al. Autonomous mobile robot path planning based on jump point search-genetic algorithm [J]. Journal of engineering design, 20, 30(6): 697-706.
[20] CHEN Ziming, YAN Jinjin, HUANG Ruen, et al. Path planning for autonomous underwater vehicles (AUVs) considering the influences and constraints of ocean currents[J]. Drones, 2024, 8(8): 348.
[21] 黄荣杰, 王亚刚. 基于可视图与改进遗传算法的机器人平滑路径规划[J]. 控制工程, 2024, 31(4): 678-686.
HUANG Rongjie, WANG Yagang. Smooth path planning for robot based on visibility graph and improved genetic algorithm[J]. Control engineering of China, 2024, 31(4): 678-686.
[22] DING Hui. Motion path planning of soccer training auxiliary robot based on genetic algorithm in fixed-point rotation environment[J]. Journal of ambient intelligence and humanized computing, 2020, 11(12): 6261-6270.
[23] 李艳生, 万勇, 张毅, 等. 基于人工蜂群-自适应遗传算法的仓储机器人路径规划[J]. 仪器仪表学报, 20, 43(4): 282-290.
LI Yansheng, WAN Yong, ZHANG Yi, et al. Warehouse robot path planning based on artificial bee colony-adaptive genetic algorithm [J]. Journal of instrumentation and measurement, 20, 43(4): 282-290.
[24] 蔡劲草, 王雷, 雷德明. 基于蛙跳算法的分布式装配混合流水车间调度[J]. 华中科技大学学报(自然科学版), 20, 51(12): 37-44.
CAI Jincao, WANG Lei, LEI Deming. Distributed assembly hybrid flow shop scheduling based on frog-leaping algorithm [J]. Journal of Huazhong University of Science and Technology (natural science edition), 20, 51(12): 37-44.
[25] 江涛, 张志安, 程志, 等. 改进遗传算法与领航跟随法的机器人编队方法[J]. 计算机工程与应用, 2020, 56(3): 240-245.
JIANG Tao, ZHANG Zhian, CHENG Zhi, et al. Robot formation method with improved genetic algorithm and leader-follower[J]. Computer engineering and applications, 2020, 56(3): 240-245.
[26] 汤云峰, 赵静, 谢非, 等. 基于改进遗传算法的机器人路径规划方法[J]. 南京师范大学学报(工程技术版), 2021, 21(3): 49-55.
TANG Yunfeng, ZHAO Jing, XIE Fei, et al. Robot path planning method based on improved genetic algorithm[J]. Journal of Nanjing Normal University (engineering and technology edition), 2021, 21(3): 49-55.
[27] FISTER I, FISTER J, YANG Xinshe, et al. A comprehensive review of firefly algorithms[J]. Swarm and evolutionary computation, 2013, 13: 34-36.
[28] ABDELAZIZ A, MEKHAMER S, BADR M, et al. The firefly metaheuristic algorithms: developments and applications[J]. International electrical engineering journal, 2015, 7(13): 1945-195.
[29] 魏书鑫, 王群京, 李国丽, 等. 萤火虫算法结合遗传算法的移动机器人路径规划[J]. 制造业自动化, 2024, 46(10): 69-82.
WEI Shuxin, WANG Qunjing, LI Guoli, et al. Firefly algorithm combined with genetic algorithm for mobile robot path planning[J]. Manufacturing automation, 2024, 46(10): 69-82.
[30] 王雷, 李明. 改进自适应遗传算法在移动机器人路径规划中的应用[J]. 南京理工大学学报, 2017, 41(5): 627-633.
WANG Lei, LI Ming. Application of improved adaptive genetic algorithm in mobile robot path planning[J]. Journal of Nanjing University of Science and Technology, 2017, 41(5): 627-633.
[31] 徐兴, 俞旭阳, 赵芸, 等. 基于改进遗传算法的移动机器人全局路径规划[J]. 计算机集成制造系统, 2022, 28(6): 1659-1672.
XU Xing, YU Xuyang, ZHAO Yun, et al. Global path planning of mobile robot based on improved genetic algorithm[J]. Computer integrated manufacturing systems, 2022, 28(6): 1659-1672.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems