[1]ZHAO Xuefeng,DI Hengxi,BAI Changze,et al.Multimodal aspect-based sentiment analysis combining multifaceted image feature extraction and gated fusion mechanism[J].CAAI Transactions on Intelligent Systems,2025,20(6):1461-1473.[doi:10.11992/tis.202503032]
Copy

Multimodal aspect-based sentiment analysis combining multifaceted image feature extraction and gated fusion mechanism

References:
[1] WANG Hongbin, REN Chun, YU Zhengtao. Multimodal sentiment analysis based on multiple attention[J]. Engineering applications of artificial intelligence, 2025, 140: 109731.
[2] 曾子明, 孙守强, 李青青. 基于融合策略的突发公共卫生事件网络舆情多模态负面情感识别[J]. 情报学报, 2023, 42(5): 611-622.
ZENG Ziming, SUN Shouqiang, LI Qingqing. Multimodal negative sentiment recognition in online public opinion during public health emergencies based on fusion strategy[J]. Journal of the China society for scientific and technical information, 2023, 42(5): 611-622.
[3] XU Nan, MAO Wenji, CHEN Guandan. Multi-interactive memory network for aspect based multimodal sentiment analysis[C]//Proceedings of the AAAI conference on artificial intelligence. Honolulu: AAAI Press, 2019: 371-378.
[4] WANG Jiawei, LIU Zhe, SHENG V, et al. SaliencyBERT: recurrent attention network for target-oriented multimodal sentiment classification[M]//Pattern Recognition and Computer Vision. Cham: Springer International Publishing, 2021: 3-15.
[5] KHAN Z, FU Yun. Exploiting BERT for multimodal target sentiment classification through input space translation[C]//Proceedings of the 29th ACM International Conference on Multimedia. [S.l.]: ACM, 2021: 3034-3042.
[6] YANG Hao, ZHAO Yanyan, QIN Bing. Face-sensitive image-to-emotional-text cross-modal translation for multimodal aspect-based sentiment analysis[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: USAACL, 2022: 3324-3335.
[7] 曾碧卿, 姚勇涛, 谢梁琦, 等. 结合局部感知与多层次注意力的多模态方面级情感分析[J]. 计算机工程, 2025, 51(9): 80-90.
ZENG Biqing, Yao Yongtao, Xie Liangqi, et al. Multimodal aspect level emotion Analysis combining local perception and multi-levelattention[J]. Computer engineering, 2025, 51(9): 80-90.
[8] 余本功, 陈明玥. 基于细粒度图像–方面的情感增强方面级情感分析[J]. 计算机应用研究, 2025, 42(4): 1073-1079.
YU Bengong, CHEN Mingyue. Aspect-oriented affective knowledge enhanced for aspect-based sentiment analysis[J]. Application research of computers, 2025, 42(4): 1073-1079.
[9] 曹银妮, 韩虎, 黄明伟, 等. 基于多视角融合表示的多模态方面级情感分析模型[J/OL]. 数据分析与知识发现, [2024-01-01]. https://link.cnki.net/urlid/10.1478.G2.20250305.1130.002.
CAO Yinni, HAN Hu, HUANG Mingwei, et al. Multimodal aspect level sentiment analysis model based on multi-perspective fusion representation [J/OL]. Data analysis and knowledge discovery, [2024-01-01]. https://link.cnki.net/urlid/10.1478.G2.20250305.1130.002.
[10] ?LVAREZ-L?PEZ T, JUNCAL-MART?NEZ J, FERN?NDEZ-GAVILANES M, et al. GTI at SemEval-2016 task 5: SVM and CRF for aspect detection and unsupervised aspect-based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). San Dieg: USAACL, 2016: 306-311.
[11] LIU Ning, SHEN Bo. Aspect-based sentiment analysis with gated alternate neural network[J]. Knowledge-based systems, 2020, 188: 105010.
[12] AN Wenbin, TIAN Feng, CHEN Ping, et al. Aspect-based sentiment analysis with heterogeneous graph neural network[J]. IEEE transactions on computational social systems, 2023, 10(1): 403-412.
[13] 段文杰, 邓金科, 张顺香, 等. 基于多层次知识增强的方面级情感分析模型[J]. 智能系统学报, 2024, 19(5): 1287-1297.
DUAN Wenjie, DENG Jinke, ZHANG Shunxiang, et al. Aspect-based sentiment analysis model based on multilevel knowledge enhancement[J]. CAAI transactions on intelligent systems, 2024, 19(5): 1287-1297.
[14] HE Bo, ZHAO Ruoyu, TANG Dali. CABiLSTM-BERT: Aspect-based sentiment analysis model based on deep implicit feature extraction[J]. Knowledge-based systems, 2025, 309: 112782.
[15] LI Xin, BING Lidong, WAI Lam, et al. Transformation networks for target-oriented sentiment classification[C]//Annual Meeting of the Association for Computational Linguistics. Melbourne: ACL, 2018: 946-956.
[16] ZHAO Chuanjun, FENG Rong, SUN Xuzhuang, et al. Enhancing aspect-based sentiment analysis with BERT-driven context generation and quality filtering[J]. Natural language processing journal, 2024, 7: 100077.
[17] ALI KANDHRO I, ALI F, UDDIN M, et al. Exploring aspect-based sentiment analysis: an in-depth review of current methods and prospects for advancement[J]. Knowledge and information systems, 2024, 66(7): 3639-3669.
[18] 陈燕, 赖宇斌, 肖澳, 等. 基于CLIP和交叉注意力的多模态情感分析模型[J]. 郑州大学学报(工学版), 2024, 45(2): 42-50.
CHEN Yan, LAI Yubin, XIAO Ao, et al. Multimodal sentiment analysis model based on CLIP and cross-attention[J]. Journal of Zhengzhou University (engineering science), 2024, 45(2): 42-50.
[19] 张铭泉, 周辉, 曹锦纲. 基于注意力机制的双BERT有向情感文本分类研究[J]. 智能系统学报, 2022, 17(6): 1220-1227.
ZHANG Mingquan, ZHOU Hui, CAO Jingang. Dual BERT directed sentiment text classification based on attention mechanism[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1220-1227.
[20] LIANG Bin, SU Hang, GUI Lin, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-based systems, 2022, 235: 107643.
[21] LEE C, LEE Hanyong, KIM K, et al. An efficient fine-tuning of generative language model for aspect-based sentiment analysis[C]//2024 IEEE International Conference on Consumer Electronics. Las Vegas: IEEE, 2024: 1-4.
[22] YU Jianfei, JIANG Jing. Adapting BERT for target-oriented multimodal sentiment classification[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 5408–5414.
[23] LI You, DING Han, LIN Yuming, et al. Multi-level textual-visual alignment and fusion network for multimodal aspect-based sentiment analysis[J]. Artificial intelligence review, 2024, 57(4): 78.
[24] 杨颖, 钱馨雨, 王合宁. 结合多粒度视图动态融合的多模态方面级情感分析[J]. 计算机工程与应用, 2024, 60(22): 172-183.
YANG Ying, QIAN Xinyu, WANG Hening. Multimodal aspect-level sentiment analysis based on multi-granularity view dynamic fusion[J]. Computer engineering and applications, 2024, 60(22): 172-183.
[25] ZHAO Jun, YANG Fuping. Fusion with GCN and SE-ResNeXt network for aspect based multimodal sentiment analysis[C]//2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference. Chongqing: IEEE, 2023: 336-340.
[26] 朱超杰, 闫昱名, 初宝昌, 等. 采用目标注意力的方面级多模态情感分析研究[J]. 智能系统学报, 2024, 19(6): 1562-1572.
ZHU Chaojie, YAN Yuming, CHU Baochang, et al. Research on aspect-based multimodal sentiment Analysis using Target Attention[J]. CAAI transactions on intelligent systems, 2024, 19(6): 1562-1572.
[27] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[28] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-11-18)[2022-01-01]. https://arxiv.org/abs/1409.1556.
[29] XIAO Luwei, WU Xingjiao, YANG Shuwen, et al. Cross-modal fine-grained alignment and fusion network for multimodal aspect-based sentiment analysis[J]. Information processing & management, 2023, 60(6): 103508.
[30] FAN Shaojing, SHEN Zhiqi, JIANG Ming, et al. Emotional attention: a study of image sentiment and visual attention[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7521-7531.
[31] SERENGIL S I, OZPINAR A. HyperExtended LightFace: a facial attribute analysis framework[C]//2021 International Conference on Engineering and Emerging Technologies. Istanbul: IEEE, 2021: 1-4.
[32] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of Machine Learning Research. Virtual: PMLR, 2021: 8748-8763.
[33] NGUYEN D Q, VU T, NGUYEN A T. Bertweet: a pretrained language model for English Tweets[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Online: EMNLP, 2020: 9-14.
[34] WANG Qianlong, XU Hongling, WEN Zhiyuan, et al. Image-to-text conversion and aspect-oriented filtration for multimodal aspect-based sentiment analysis[J]. IEEE transactions on affective computing, 2023, 15(3): 1264-1278.
[35] WANG Yequan, HUANG Minlie, ZHU Xiaoyan, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in NaturalLanguage Processing. Austin: USAACL, 2016: 606-615.
[36] CHEN Peng, SUN Zhongqian, BING Lidong, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in NaturalLanguage Processing. Copenhagen: USAACL, 2017: 452-461.
[37] FAN Feifan, FENG Yansong, ZHAO Dongyan. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels: USAACL, 2018: 3433-3442.
[38] YU Jianfei, JIANG Jing, XIA Rui. Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification[J]. IEEE/ACM transactions on audio, speech, and language processing, 2019, 28: 429-439.
[39] ZHAO Fei, WU Zhen, LONG Siyu, et al. Learning from adjective-noun pairs: a knowledge-enhanced framework for target-oriented multimodal sentiment classification[C]// Proceedings of the 29th International Conference on Computational Linguistics. Gyeongju: International Committee on Computational Linguistics 2022: 6784-6794.
[40] YU Jjianfei, WANG Jieming, XIA Rui, et al. Targeted multimodal sentiment classification based on coarse-to-fine grained image-target matching[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Vienna: IJCAI, 2022: 4482-4488.
[41] 张添植, 周刚, 刘洪波, 等. 基于文本和图像门控融合机制的多模态方面级情感分析[J]. 计算机科学, 2024, 51(9): 242-249.
ZHANG Tianzhi, ZHOU Gang, LIU Hongbo, et al. Text-image gated fusion mechanism for multimodal aspect-based sentiment analysis[J]. Computer science, 2024, 51(9): 242-249.
[42] ZHANG Tianzhi, ZHOU Gang, LU Jicang, et al. Text-image semantic relevance identification for aspect-based multimodal sentiment analysis[J]. PeerJ computer science, 2024, 10: e1904.
[43] 杨丽莎, 马常霞, 仲兆满, 等. 多尺度语义感知和注意力融合的多模态方面级情感分析模型[J]. 南京大学学报(自然科学), 2025, 61(2): 223-236.
YANG Lisha, MA Changxia, ZHONG Zhaoman, et al. Multiscale semantic perception and attention fusion for multimodal aspect-level sentiment analysis model[J]. Journal of Nanjing University (natural science), 2025, 61(2): 223-236.
[44] CHEN Yifan, XIONG Haoliang, LI Kuntao, et al. Relevance-aware visual entity filter network for multimodal aspect-based sentiment analysis[J]. International journal of machine learning and cybernetics, 2025, 16(2): 1389-1402.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems