[1]LI Bing,WANG Yue,ZHANG Yimu,et al.Metal surface defect detection algorithm based on improved RT-DETR algorithm[J].CAAI Transactions on Intelligent Systems,2025,20(6):1404-1419.[doi:10.11992/tis.202502021]
Copy

Metal surface defect detection algorithm based on improved RT-DETR algorithm

References:
[1] 李宗祐, 高春艳, 吕晓玲, 等. 基于深度学习的金属材料表面缺陷检测综述[J]. 制造技术与机床, 2023(6): 61-67.
LI Zongyou, GAO Chunyan, LV Xiaoling, et al. A review of surface defect detection for metal materials based on deep learning[J]. Manufacturing technology & machine tool, 2023(6): 61-67.
[2] 孙卫波, 丁卫. 改进YOLOv7的带钢表面缺陷检测算法[J]. 工业控制计算机, 2024, 37(8): 94-96,101.
SUN Weibo, DING Wei. Improved YOLOv7 strip surface defect detection algorithm[J]. Industrial control computer, 2024, 37(8): 94-96,101.
[3] 马鸽, 邓开宏, 李国章, 等. 基于改进YOLOv5s模型的金属表面缺陷检测方法[J]. 广州大学学报(自然科学版), 2024, 23(4): 9-19.
MA Ge, DENG Kaihong, LI Guozhang, et al. Metal surface defect dectection method based on an improved YOLOv5s model[J]. Journal of Guangzhou University (natural science edition), 2024, 23(4): 9-19.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
[5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
[6] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
[7] 向宽, 李松松, 栾明慧, 等. 基于改进Faster RCNN的铝材表面缺陷检测方法[J]. 仪器仪表学报, 2021, 42(1): 191-198.
XIANG Kuan, LI Songsong, LUAN Minghui, et al. Aluminum product surface defect detection method based on improved Faster RCNN[J]. Chinese journal of scientific instrument, 2021, 42(1): 191-198.
[8] WANG H, WANG J, LUO F. Research on surface defect detection of metal sheet and strip based on multi-level feature Faster R-CNN[J]. Mechanical science and technology for aerospace engineering, 2020, 20(4): 94-107.
[9] FANG Junting, TAN Xiaoyang, WANG Yuhui. ACRM: attention cascade R-CNN with mix-NMS for metallic surface defect detection[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 423-430.
[10] WANG Chenglong, XIE Heng. MeDERT: a metal surface defect detection model[J]. IEEE access, 2023, 11: 35469-35478.
[11] 刘浩翰, 孙铖, 贺怀清, 等. 基于改进YOLOv3的金属表面缺陷检测[J]. 计算机工程与科学, 2023, 45(7): 1226-1235.
LIU Haohan, SUN Cheng, HE Huaiqing, et al. Metal surface defect detection based on improved YOLOv3[J]. Computer engineering & science, 2023, 45(7): 1226-1235.
[12] 凌强, 刘宇, 王春举, 等. DN-YOLOv5的金属双极板表面缺陷检测算法[J]. 哈尔滨工业大学学报, 2023, 55(12): 104-112.
LING Qiang, LIU Yu, WANG Chunju, et al. DN-YOLOv5 algorithm for detecting surface defects of metal bipolar plates[J]. Journal of Harbin Institute of Technology, 2023, 55(12): 104-112.
[13] ZHANG Heng, FU Wei, WANG Xiaoming, et al. An efficient model for metal surface defect detection based on attention mechanism and multi-scale feature[J]. The journal of supercomputing, 2024, 81(1): 40.
[14] ZHAO Yian, LYU Wenyu, XU Shangliang, et al. DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965-16974.
[15] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]//Computer Vision– ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
[16] 董适, 赵国瑞, 苟豪, 等. 基于改进RT-Detr的黄瓜果实选择性采摘识别方法[J]. 农业工程学报, 2025, 41(1): 212-220.
DONG Shi, ZHAO Guorui, GOU Hao, et al. Identifying cucumber fruits during selective picking using improved RT-Detr[J]. Transactions of the Chinese society of agricultural engineering, 2025, 41(1): 212-220.
[17] 陶健. 基于空洞卷积与空间注意力的遥感影像小目标检测方法[J]. 测绘与空间地理信息, 2024, 47(10): 104-107,111.
TAO Jian. Small target detection method in remote sensing images based on atrous convolution and spatial attention[J]. Geomatics & spatial information technology, 2024, 47(10): 104-107,111.
[18] CHEN Zixuan, HE Zewei, LU Zheming. DEA-net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE transactions on image processing, 2024, 33: 1002-1015.
[19] ZHANG Luping, LUO Junhai, HUANG Yian, et al. MDIGCNet: multidirectional information-guided contextual network for infrared small target detection[C]//IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. [S.l.]: IEEE, 2024: 2063-2076.
[20] YU Zitong, ZHAO Chenxu, WANG Zezheng, et al. Searching central difference convolutional networks for face anti-spoofing[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 5294–5304.
[21] 李琼, 考月英, 张莹, 等. 面向无人机航拍图像的目标检测研究综述[J]. 图学学报, 2024, 45(6): 1145-1164.
LI Qiong, KAO Yueying, ZHANG Ying, et al. Review on object detection in UAV aerial images[J]. Journal of graphics, 2024, 45(6): 1145-1164.
[22] WILLIAMS T, LI R. Wavelet pooling for convolutional neural networks[C]//6th International conference on learning representations. Vancouver: [s. n. ], 2018.
[23] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. (2024-02-29) [2025-01-02]. https://arxiv.org/abs/2402.13616.
[24] YAO Ting, PAN Yingwei, LI Yehao, et al. Wave-ViT: unifying wavelet and transformers for visual representation learning[M]//Computer Vision–ECCV 2022. Cham: Springer Nature Switzerland, 2022: 328-345.
[25] 吴铁钰, 杨光, 邹丽. RSG-YOLO: 用于检测道路坑洼的高效神经网络[J]. 计算机技术与发展, 2025, 35(2): 199-206.
WU Tieyu, YANG Guang, ZOU Li. RSG-YOLO: an efficient neural network for road pothole detection[J]. Computer technology and development, 2025, 35(2): 199-206.
[26] 孙己龙, 刘勇, 周黎伟, 等. 基于DCNv2和Transformer Decoder的隧道衬砌裂缝高效检测模型研究[J]. 图学学报, 2024, 45(5): 1050-1061.
SUN Jilong, LIU Yong, ZHOU Liwei, et al. Research on efficient detection model of tunnel lining crack based on DCNv2 and Transformer Decoder[J]. Journal of graphics, 2024, 45(5): 1050-1061.
[27] QI Yaolei, HE Yuting, QI Xiaoming, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 6047-6056.
[28] LI Dachong, LI Li, CHEN Zhuangzhuang, et al. ShiftwiseConv: small convolutional kernel with large kernel effect[EB/OL]. (2024-01-23) [2025-03-13]. https://arxiv.org/abs/2401.12736.
[29] XIA Zhuofan, PAN Xuran, SONG Shiji, et al. Vision transformer with deformable attention[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4784-4793.
[30] LIU Xinyu, PENG Houwen, ZHENG Ningxin, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouve: IEEE, 2023: 14420-14430.
[31] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytic/yolov5: v5.0-YOLOv5-P6 1280 models, AWS, Supervise. ly and YouTube integrations[EB/OL]. (2021-10-12) [2025-01-02]. https://github.com/ultralytics/yolov5.
[32] LI Chuyi, LI Lulu, JIANG Hongliang, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07) [2025-01-02]. https://arxiv.org/abs/2209.02976.
[33] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464-7475.
[34] VARGHESE R, M S. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. Chennai: IEEE, 2024: 1-6.
[35] WANG Aowang, CHEN Hui, LIU Lihao, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. (2024-10-30)[2025-01-02]. https://arxiv.org/abs/2405.14458.
[36] KHANAM R, MUHAMMAD H. YOLOv11: An Overview of the Key Architectural Enhancements[EB/OL]. (2024-10-23) [2025-01-02]. https://arxiv.org/abs/2410.17725.
[37] TIAN Yunjie, YE Qixiang, DOERMAN D. YOLOv12: Attention-Centric Real-Time Object Detectors[EB/OL]. (2025-02-18) [2025-03-13]. https://arxiv.org/abs/2502.12524.
[38] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154-6162.
[39] LU Xin, LI Buyu, YUE Yuxin, et al. Grid R-CNN[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7355-7364.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems