[1]YAN Aijun,HAO Chen.Stochastic configuration networks based on mixed distribution weighted M-estimation and adaptive regularization[J].CAAI Transactions on Intelligent Systems,2025,20(6):1392-1403.[doi:10.11992/tis.202501023]
Copy

Stochastic configuration networks based on mixed distribution weighted M-estimation and adaptive regularization

References:
[1] MAO Chengsheng, YAO Liang, LUO Yuan. ImageGCN: multi-relational image graph convolutional networks for disease identification with chest X-rays[J]. IEEE transactions on medical imaging, 2022, 41(8): 1990-2003.
[2] QIAO Junfei, SUN Zijian, MENG Xi. A comprehensively improved interval type-2 fuzzy neural network for NOx emissions prediction in MSWI process[J]. IEEE transactions on industrial informatics, 2023, 19(11): 11286-11297.
[3] SCARDAPANE S, WANG Dianhui. Randomness in neural networks: an overview[J]. Wiley interdisciplinary reviews: data mining and knowledge discovery, 2017, 7(2): e1200.
[4] 乔俊飞, 李凡军, 杨翠丽. 随机权神经网络研究现状与展望[J]. 智能系统学报, 2016, 11(6): 758-767.
QIAO Junfei, LI Fanjun, YANG Cuili. Review and prospect on neural networks with random weights[J]. CAAI transactions on intelligent systems, 2016, 11(6): 758-767.
[5] PAO Y H, TAKEFUJI Y. Functional-link net computing: theory, system architecture, and functionalities[J]. Computer, 1992, 25(5): 76-79.
[6] LI Ming, WANG Dianhui. Insights into randomized algorithms for neural networks: practical issues and common pitfalls[J]. Information sciences, 2017, 382: 170-178.
[7] WANG Dianhui, LI Ming. Stochastic configuration networks: fundamentals and algorithms[J]. IEEE transactions on cybernetics, 2017, 47(10): 3466-3479.
[8] DAI Wei, ZHOU Xinyu, LI Depeng, et al. Hybrid parallel stochastic configuration networks for industrial data analytics[J]. IEEE transactions on industrial informatics, 2021, 18(4): 2331-2341.
[9] LI Kang, YANG Cuili, WANG Wei, et al. An improved stochastic configuration network for concentration prediction in wastewater treatment process[J]. Information sciences, 2023, 622: 148-160.
[10] EL-MELEGY M T. Model-wise and point-wise random sample consensus for robust regression and outlier detection[J]. Neural networks, 2014, 59: 23-35.
[11] DAI Wei, CHEN Qixin, CHU Fei, et al. Robust regularized random vector functional link network and its industrial application[J]. IEEE access, 2017, 5: 16162-16172.
[12] WANG Dianhui, LI Ming. Robust stochastic configuration networks with kernel density estimation for uncertain data regression[J]. Information sciences, 2017, 412: 210-222.
[13] 李温鹏, 周平. 高炉铁水质量鲁棒正则化随机权神经网络建模[J]. 自动化学报, 2020, 46(4): 721-733.
LI Wenpeng, ZHOU Ping. Robust regularized RVFLNs modeling of molten iron quality in blast furnace ironmaking[J]. Acta automatica sinica, 2020, 46(4): 721-733.
[14] LI Ming, HUANG Changqin, WANG Dianhui. Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression[J]. Information sciences, 2019, 473: 73-86.
[15] DAI Wei, LI Depeng, CHEN Qixin, et al. Data driven particle size estimation of hematite grinding process using stochastic configuration network with robust technique[J]. Journal of Central South University, 2019, 26(1): 43-62.
[16] ZHOU Ping, LYU Youbin, WANG Hong, et al. Data-driven robust RVFLNs modeling of a blast furnace iron-making process using cauchy distribution weighted M-estimation[J]. IEEE transactions on industrial electronics, 2017, 64(9): 7141-7151.
[17] ZOU Hui, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the royal statistical society: series B (statistical methodology), 2005, 67(2): 301-320.
[18] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15: 1929-1958.
[19] 王前进, 代伟, 陆群, 等. 一种随机配置网络软测量模型的稀疏学习方法[J]. 控制与决策, 2022, 37(12): 3171-3182.
WANG Qianjin, DAI Wei, LU Qun, et al. A sparse learning method for SCN soft measurement model[J]. Control and decision, 2022, 37(12): 3171-3182.
[20] ZHAO Lijie, ZOU Shida, HUANG Mingzhong, et al. Distributed regularized stochastic configuration networks via the elastic net[J]. Neural computing and applications, 2021, 33(8): 3281-3297.
[21] 赵立杰, 邹世达, 郭烁, 等. 基于正则化随机配置网络的球磨机工况识别[J]. 控制工程, 2020, 27(1): 1-7.
ZHAO Lijie, ZOU Shida, GUO Shuo, et al. Ball mill load condition recognition model based on regularized stochastic configuration networks[J]. Control engineering of China, 2020, 27(1): 1-7.
[22] FAN Jun, YAN Ailing, XIU Naihua. Asymptotic properties for M-estimators in linear models with dependent random errors[J]. Journal of statistical planning and inference, 2014, 148: 49-66.
[23] ROUSSEEUW P J, CROUX C. Alternatives to the Median absolute deviation[J]. Journal of the American statistical association, 1993, 88(424): 1273-1283.
[24] L?PEZ-RUBIO E, PALOMO E J, DOM?NGUEZ E. Robust self-organization with M-estimators[J]. Neurocomputing, 2015, 151: 408-423.
[25] AGLIARI E, ALEMANNO F, AQUARO M, et al. Regularization, early-stopping and dreaming: a hopfield-like setup to address generalization and overfitting[J]. Neural networks, 2024, 177: 106389.
[26] 张成龙, 丁世飞, 郭丽丽, 等. 随机配置网络研究进展[J]. 软件学报, 2024, 35(5): 2379-2399.
ZHANG Chenglong, DING Shifei, GUO Lili, et al. Research progress on stochastic configuration network[J]. Journal of software, 2024, 35(5): 2379-2399.
[27] WANG Tianzheng, TANG Jian, XIA Heng, et al. Data-driven multi-objective intelligent optimal control of municipal solid waste incineration process[J]. Engineering applications of artificial intelligence, 2024, 137: 109157.
[28] MENG Xi, TANG Jian, QIAO Junfei. NOx emissions prediction with a brain-inspired modular neural network in municipal solid waste incineration processes[J]. IEEE transactions on industrial informatics, 2022, 18(7): 4622-4631.
[29] 汤健, 夏恒, 余文, 等. 城市固废焚烧过程智能优化控制研究现状与展望[J]. 自动化学报, 2023, 49(10): 2019-2059.
TANG Jian, XIA Heng, YU Wen, et al. Research status and prospects of intelligent optimization control for municipal solid waste incineration process[J]. Acta automatica sinica, 2023, 49(10): 2019-2059.
[30] 孙剑, 蒙西, 乔俊飞. 数据驱动的城市固废焚烧过程烟气含氧量预测控制[J]. 控制理论与应用, 2024, 41(3): 484-495.
SUN Jian, MENG Xi, QIAO Junfei. Data-driven predictive control of oxygen content in flue gas for municipal solid waste incineration process[J]. Control theory & applications, 2024, 41(3): 484-495.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems