[1]CHEN Tao,XIE Zaipeng,QU Zhihao.Federated semi-supervised learning model based on dynamic threshold enhanced prototype network[J].CAAI Transactions on Intelligent Systems,2024,19(3):534-545.[doi:10.11992/tis.202311015]
Copy

Federated semi-supervised learning model based on dynamic threshold enhanced prototype network

References:
[1] SOHN K, BERTHELOT D, LI Chunliang, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence[EB/OL]. (2020–01–21)[2023–11–13]. http://arxiv.org/abs/2001.07685.
[2] MALAVIYA S, SHUKLA M, KORAT P, et al. FedFAME: a data augmentation free framework based on model contrastive learning for federated semi-supervised learning[C]//Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. Tallinn: ACM, 2023: 1114–1121.
[3] FENG Siwei, LI Boyang, YU Han, et al. Semi-supervised federated heterogeneous transfer learning[J]. Knowledge-based systems, 2022, 252: 109384.
[4] PEI Xinjun, DENG Xiaoheng, TIAN Shengwei, et al. A knowledge transfer-based semi-supervised federated learning for IoT malware detection[J]. IEEE transactions on dependable and secure computing, 2023, 20(3): 2127–2143.
[5] WEN Tingjie, ZHAO Shengjie, ZHANG Rongqing. Federated semi-supervised learning through a combination of self and cross model ensembling[C]//2022 International Joint Conference on Neural Networks. Padua: IEEE, 2022: 1–8.
[6] ITAHARA S, NISHIO T, KODA Y, et al. Distillation-based semi-supervised federated learning for communication-efficient collaborative training with non-IID private data[J]. IEEE transactions on mobile computing, 2023, 22(1): 191–205.
[7] KIM W, PARK K, SOHN K, et al. Federated semi-supervised learning with prototypical networks[EB/OL]. (2022–05–27)[2023–11–13]. http://arxiv.org/abs/2205.13921.
[8] GAO Liang, FU Huazhu, LI Li, et al. FedDC: federated learning with non-IID data via local drift decoupling and correction[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10102–10111.
[9] 窦勇敢, 袁晓彤. 基于隐式随机梯度下降优化的联邦学习[J]. 智能系统学报, 2022, 17(3): 488–495
DOU Yonggan, YUAN Xiaotong. Federated learning with implicit stochastic gradient descent optimization[J]. CAAI transactions on intelligent systems, 2022, 17(3): 488–495
[10] 谭作文, 张连福. 机器学习隐私保护研究综述[J]. 软件学报, 2020, 31(7): 2127–2156
TAN Zuowen, ZHANG Lianfu. Survey on privacy preserving techniques for machine learning[J]. Journal of software, 2020, 31(7): 2127–2156
[11] JEONG W, YOON J, YANG E, et al. Federated semi-supervised learning with inter-client consistency[C]//International Conference on Learning Representations. Virtual Only: ICLR, 2021: 901–914.
[12] WU Yaqiang, LI Yifei, ZHAO Tianzhe, et al. Improved prototypical network for active few-shot learning[J]. Pattern recognition letters, 2023, 172(C): 188–194.
[13] WANG Ruiqi, ZHANG Xuyao, LIU Chenglin. Meta-prototypical learning for domain-agnostic few-shot recognition[J]. IEEE transactions on neural networks and learning systems, 2022, 33(11): 6990–6996.
[14] SEHANOBISH A, KANNAN K, ABRAHAM N, et al. Meta-learning pathologies from radiology reports using variance aware prototypical networks[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track. Abu Dhabi: Association for Computational Linguistics, 2022: 332–347.
[15] XU Xin, DU Junping, XUE Zhe. Multi-level self-adaptive prototypical networks for few-shot node classification on attributed networks[J]. Neural computing and applications, 2023, 35(12): 9131–9144.
[16] PHAPHUANGWITTAYAKUL A, YING Fangli, GUO Yi, et al. Adaptive adversarial prototyping network for few-shot prototypical translation[J]. Journal of visual communication and image representation, 2023, 94: 103845.
[17] TAN Yue, LONG Guodong, LIU Lu, et al. FedProto: federated prototype learning across heterogeneous clients[J]. Proceedings of the AAAI conference on artificial intelligence, 2022, 36(8): 8432–8440.
[18] BERTHELOT D, CARLINI N, GOODFELLOW I, et al. MixMatch: a holistic approach to semi-supervised learning[EB/OL]. (2019–05–06)[2023–11–13]. http://arxiv.org/abs/1905.02249.
[19] LI Xiaorun, CAO Zeyu, ZHAO Liaoying, et al. ALPN: active-learning-based prototypical network for few-shot hyperspectral imagery classification[J]. IEEE geoscience and remote sensing letters, 2022, 19: 5508305.
[20] CASCANTE-BONILLA P, TAN Fuwen, QI Yanjun, et al. Curriculum labeling: revisiting pseudo-labeling for semi-supervised learning[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(8): 6912–6920.
[21] BERTHELOT D, CARLINI N, CUBUK E D, et al. ReMixMatch: semi-supervised learning with distribution alignment and augmentation anchoring[EB/OL]. (2019–11–21) [2023–11–13]. http://arxiv.org/abs/1911.09785.
[22] HAN Yue, LIU Yuhong, JIN Zhigang. Sentiment analysis via semi-supervised learning: a model based on dynamic threshold and multi-classifiers[J]. Neural computing and applications, 2020, 32(9): 5117–5129.
[23] KARIM N, MITHUN N C, RAJVANSHI A, et al. C-SFDA: a curriculum learning aided self-training framework for efficient source free domain adaptation[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 24120–24131.
[24] ZHANG Bowen, WANG Yidong, HOU Wenxin, et al. FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling[EB/OL]. (2021–10–15)[2023–11–13]. http://arxiv.org/abs/2110.08263.
[25] ARAZO E, ORTEGO D, ALBERT P, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]//2020 International Joint Conference on Neural Networks. Glasgow: IEEE, 2020: 1–8.
[26] 王耀力, 刘晓慧, 李斌, 等. 流形嵌入的选择性伪标记与小样本数据迁移[J]. 西北工业大学学报, 2021, 39(5): 1122–1129
WANG Yaoli, LIU Xiaohui, LI Bin, et al. The manifold embedded selective pseudo-labeling algorithm and transfer learning of small sample dataset[J]. Journal of northwestern polytechnical university, 2021, 39(5): 1122–1129
[27] 张英俊, 李牛牛, 谢斌红, 等. 课程学习指导下的半监督目标检测框架[J/OL]. 计算机应用, (2023–12–20)[2024–04–26]. http://www.joca.cn/CN/10.11772/j.issn.1001-9081.2023081062.
ZHANG Yingjun, LI Niuniu, XIE Binhong, et al. Semi-supervised object detection framework guided by curriculum learning [J/OL]. Journal of computer applications, (2023–12–20)[2024–04–26]. http://www.joca.cn/CN/10.11772/j.issn.1001-9081.2023081062.
[28] XIE Qizhe, DAI Zihang, HOVY E, et al. Unsupervised data augmentation for consistency training[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM, 2020: 6256–6268.
[29] FRANTAR E, ALISTARH D. SPDY: accurate pruning with speedup guarantees[EB/OL]. (2022–01–31) [2023–11–13]. http://arxiv.org/abs/2201.13096.
[30] LIU Ren, BIAN Fengmiao, ZHANG Xiaoqun. Binary quantized network training with sharpness-aware minimization[J]. Journal of scientific computing, 2022, 94(1): 16.
[31] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. (2016–02–17)[2023–11–13]. http://arxiv.org/abs/1602.05629.
[32] LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[EB/OL]. (2018–12–14)[2023–11–13]. http://arxiv.org/abs/1812.06127.
[33] LIANG Xiaoxiao, LIN Yiqun, FU Huazhu, et al. RSCFed: random sampling consensus federated semi-supervised learning[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10144–10153.
[34] ZHANG Zhengming, YANG Yaoqing, YAO Zhewei, et al. Improving semi-supervised federated learning by reducing the gradient diversity of models[C]//2021 IEEE International Conference on Big Data. Orlando: IEEE, 2021: 1214–1225.
[35] COATES A, NG A, LEE H. An analysis of single-layer networks in unsupervised feature learning[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings. Fort Lauderdale: PMLR, 2011: 215–223.
[36] 杨寒雨, 赵晓永, 王磊. 数据归一化方法综述[J]. 计算机工程与应用, 2023, 59(3): 13–22
YANG Hanyu, ZHAO Xiaoyong, WANG Lei. Review of data normalization methods[J]. Computer engineering and applications, 2023, 59(3): 13–22
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems