[1]BI Xiaojun,MAO Yafei.Few-shot oracle bone character recognition based on supervised contrastive learning[J].CAAI Transactions on Intelligent Systems,2024,19(1):106-113.[doi:10.11992/tis.202309008]
Copy

Few-shot oracle bone character recognition based on supervised contrastive learning

References:
[1] 谢乃和. 从殷墟走向世界的“绝学”甲骨文字研究: 韩国釜山“纪念甲骨文发现120周年国际学术研讨会”述评[J]. 管子学刊, 2020(3): 125–128
XIE Naihe. Flourishing from Yin Ruins to the world—a review of “busan, South Korea international symposium commemorating the 120th anniversary of oracle bone inscription discovery”[J]. Guan zi journal, 2020(3): 125–128
[2] GUPTA J, PATHAK S, KUMAR G. Deep learning (CNN) and transfer learning: a review[J]. Journal of physics:conference series, 2022, 2273(1): 012029.
[3] HUANG Shuangping, WANG Haobin, LIU Yongge, et al. OBC306: a large-scale oracle bone character recognition dataset[C]//2019 International Conference on Document Analysis and Recognition. Piscataway IEEE, 2020: 681?688.
[4] 安胜彪, 郭昱岐, 白宇, 等. 小样本图像分类研究综述[J]. 计算机科学与探索, 2023, 17(3): 511–532
AN Shengbiao, GUO Yuqi, BAI Yu, et al. Survey of few-shot image classification research[J]. Journal of frontiers of computer science and technology, 2023, 17(3): 511–532
[5] LI Na, HAO Huizhen, GU Qing, et al. A transfer learning method for automatic identification of sandstone microscopic images[J]. Computers & geosciences, 2017, 103: 111–121.
[6] LIU Wenhe, CHANG Xiaojun, YAN Yan, et al. Few-shot text and image classification via analogical transfer learning[J]. ACM transactions on intelligent systems and technology, 9(6): 71.
[7] LONG M, ZHU H, WANG J, JORDAN MI. Deep transfer learning with joint adaptation networks[C]//International Conference on Machine Learning. PMLR, 2017: 2208?2217.
[8] LONG Mingsheng, WANG Jianmin, JORDAN M I. Unsupervised domain adaptation with residual transfer networks[EB/OL]. (2017?02?16)[2023?09?06]. https://arxiv.org/abs/1602.04433.pdf.
[9] GE Weifeng, YU Yizhou. Borrowing treasures from the wealthy: deep transfer learning through selective joint fine-tuning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 10?19.
[10] XIE Jiangtao, LONG Fei, LV Jiaming, et al. Joint distribution matters: deep Brownian distance covariance for few-shot classification[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7962?7971.
[11] HAN Wenhui, REN Xinlin, LIN Hangyu, et al. Self-supervised learning of orc-bert augmentor for recognizing few-shot oracle characters[C]//Ishikawa H, Liu CL, Pajdla T, et al. Asian Conference on Computer Vision. Cham: Springer, 2021: 652?668.
[12] BENDOU Y, HU Yuqing, LAFARGUE R, et al. EASY: ensemble augmented-shot Y-shaped learning: state-of-the-art few-shot classification with simple ingredients[EB/OL]. (2022?02?07)[2023?09?06]. https://arxiv.org/abs/2201.09699.pdf
[13] MANGLA P, SINGH M, SINHA A, et al. Charting the right manifold: manifold mixup for few-shot learning[C]//2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2207?2216.
[14] ZHANG Chi, CAI Yujun, LIN Guosheng, et al. DeepEMD: few-shot image classification with differentiable earth mover’s distance and structured classifiers[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12200?12210.
[15] LIU Jialin, CHAO Fei, LIN C M. Task augmentation by rotating for meta-learning[EB/OL]. (2020?02?08)[2023?09?06]. https://arxiv.org/abs/2003.00804.pdf.
[16] WANG Yan, CHAO Weilun, WEINBERGER K Q, et al. SimpleShot: revisiting nearest-neighbor classification for few-shot learning[EB/OL]. (2019?11?16)[2023?09?06]. https://arxiv.org/abs/1911.04623.pdf.
[17] KHOSLA P, TETERWAK P, WANG C. Supervised contrastive learning[J]. Advances in neural information processing systems, 2020, 33: 18661–18673.
[18] ZHANG Hongyi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2017?10?25)[2023?09?06]. https://arxiv.org/abs/1710.09412.pdf.
[19] LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts[EB/OL]. (2016?08?13)[2023?09?06]. https://arxiv.org/abs/1608.03983.pdf.
[20] MAI Zheda, LI Ruiwen, KIM H, et al. Supervised contrastive replay: revisiting the nearest class mean classifier in online class-incremental continual learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 3589?3599.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 770?778.
[22] WU Zhirong, XIONG Yuanjun, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3733?3742.
[23] VAN DEN OORD A, LI Yazhe, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. (2018?07?10)[2023?09?06]. https://arxiv.org/abs/1807.03748.pdf.
[24] TIAN Yonglong, KRISHNAN D, ISOLA P. Contrastive multiview coding[EB/OL].(2019?01?13)[2023?09?06]. https://arxiv.org/abs/1906.05849.pdf.
[25] LI Bang, DAI Qianwen, GAO Feng, et al. HWOBC-a handwriting oracle bone character recognition database[J]. Journal of physics:conference series, 2020, 1651(1): 012050.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems