[1]LU Yifan,LI Xuanpeng,XUE Qifan.Vehicle trajectory prediction model for unseen domain scenarios[J].CAAI Transactions on Intelligent Systems,2024,19(5):1238-1247.[doi:10.11992/tis.202306046]
Copy

Vehicle trajectory prediction model for unseen domain scenarios

References:
[1] HUANG Yanjun, DU Jiatong, YANG Ziru, et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE transactions on intelligent vehicles, 2022, 7(3): 652-674.
[2] 王翎, 孙涵. 基于域适应的多场景车辆检测[J]. 计算机技术与发展, 2019, 29(12): 158-161, 166.
WANG Ling, SUN Han. Vehicle detection in different scenes based on domain adaptation[J]. Computer technology and development, 2019, 29(12): 158-161, 166.
[3] ARJOVSKY M, BOTTOU L, GULRAJANI I, et al. Invariant risk minimization[EB/OL]. (2019-07-05) [2023-06-26]. https://arxiv.org/abs/1907.02893.
[4] ELMAN J L. Finding structure in time[J]. Cognitive science, 1990, 14(2): 179-211.
[5] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[6] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1724–1734.
[7] 柴进. 基于聚类和LSTM算法的车辆轨迹预测模型研究[D]. 北京: 北京交通大学, 2020.
CHAI Jin. On vehicle trajectory prediction model based on combined clustering and LSTM algorithm[D]. Beijing: Beijing Jiaotong University, 2020.
[8] 孔玮, 刘云, 李辉, 等. 基于深度学习的行人轨迹预测方法综述[J]. 控制与决策, 2021, 36(12): 2841-2850.
KONG Wei, LIU Yun, LI Hui, et al. Survey of pedestrian trajectory prediction methods based on deep learning[J]. Control and decision, 2021, 36(12): 2841-2850.
[9] PARK S H, KIM B, KANG C M, et al. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C]//2018 IEEE Intelligent Vehicles Symposium. Changshu: IEEE, 2018: 1672-1678.
[10] 赵靖文, 李煊鹏, 张为公. 车辆多目标交互行为建模的轨迹预测方法[J]. 智能系统学报, 2023, 18(3): 480-488.
ZHAO Jingwen, LI Xuanpeng, ZHANG Weigong. Vehicle trajectory prediction method based on modeling of multi-agent interaction behavior[J]. CAAI transactions on intelligent systems, 2023, 18(3): 480-488.
[11] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 961-971.
[12] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 1468-1476.
[13] 曾伟良, 陈漪皓, 姚若愚, 等. 时空图注意力网络在交叉口车辆轨迹预测的应用[J]. 计算机科学, 2021, 48(S1): 334-341.
ZENG Weiliang, CHEN Yihao, YAO Ruoyu, et al. Application of spatial-temporal graph attention networks in trajectory prediction for vehicles at intersections[J]. Computer science, 2021, 48(S1): 334-341.
[14] 赵靖文. 基于改进Transformer模型的车辆轨迹预测研究[D]. 南京: 东南大学, 2022.
ZHAO Jingwen. Research on vehicle trajectory prediction based on the improved transformer model. Nanjing: Southeast University, 2022.
[15] DIEHL F, BRUNNER T, LE M T, et al. Graph neural networks for modelling traffic participant interaction[C]//2019 IEEE Intelligent Vehicles Symposium. Paris: IEEE, 2019: 695-701.
[16] MOHAMED A, QIAN Kun, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 14412-14420.
[17] LI Xin, YING Xiaowen, CHUAH M C. GRIP: graph-based interaction-aware trajectory prediction[C]// 2019 IEEE Intelligent Transportation Systems Conference. Auckland: IEEE, 2019: 3960-3966.
[18] LI Xin, YING Xiaowen, CHUAH M C. GRIP++: enhanced graph-based interaction-aware trajectory prediction for autonomous driving[EB/OL]. (2019-07-17) [2023-06-26]. https://arxiv.org/abs/1907.07792.
[19] ZHAO Hang, GAO Jiyang, LAN Tian, et al. TNT: target-driven trajectory prediction[EB/OL]. (2020-08-19) [2023-06-26]. https://arxiv.org/abs/2008.08294.
[20] GU Junru, SUN Chen, ZHAO Hang. DenseTNT: end-to-end trajectory prediction from dense goal sets[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 15283-15292.
[21] LIN Yong, DONG Hanze, WANG Hao, et al. Bayesian invariant risk minimization[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 16000-16009.
[22] ZHOU Xiao, LIN Yong, ZHANG Weizhong, et al. Sparse invariant risk minimization[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore: PMLR, 2022: 27222-27244.
[23] ZIEGLER J, BENDER P, SCHREIBER M, et al. Making bertha drive—an autonomous journey on a historic route[J]. IEEE intelligent transportation systems magazine, 2014, 6(2): 8-20.
[24] HONG J, SAPP B, PHILBIN J. Rules of the road: predicting driving behavior with a convolutional model of semantic interactions[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 8454-8462.
[25] GAO Jiyang, SUN Chen, ZHAO Hang, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11522-11530.
[26] ZENG Wenyuan, LIANG Ming, LIAO Renjie, et al. LaneRCNN: distributed representations for graph-centric motion forecasting[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 532-539.
[27] WANG Jindong, LAN Cuiling, LIU Chang, et al. Generalizing to unseen domains: a survey on domain generalization[J]. IEEE transactions on knowledge and data engineering, 2023, 35(8): 8052-8072.
[28] PENG Xi, QIAO Fengchun, ZHAO Long. Out-of-domain generalization from a single source: an uncertainty quantification approach[J]. IEEE transactions on pattern analysis and machine intelligence, 2024, 46(3): 1775-1787.
[29] SOMAVARAPU N , MA C Y , KIRA Z . Frustratingly simple domain generalization via image stylization[EB/OL]. (2020-06-19) [2023-06-26]. https://arxiv.org/abs/2006.11207.
[30] SEGU M, TONIONI A, TOMBARI F. Batch normalization embeddings for deep domain generalization[J]. Pattern recognition, 2023, 135: 109115.
[31] LI Da, YANG Yongxin, SONG Yizhe, et al. Learning to generalize: meta-learning for domain generalization[J]. Proceedings of the AAAI conference on artificial intelligence, 2018, 32(1): 3490-3497.
[32] GAN Chuang, YANG Tianbao, GONG Boqing. Learning attributes equals multi-source domain generalization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 87-97.
[33] LI Haoliang, PAN S J, WANG Shiqi, et al. Domain generalization with adversarial feature learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5400-5409.
[34] KRUEGER D, CABALLERO E, JACOBSEN J H, et al. Out-of-distribution generalization via risk extrapolation (REx)[EB/OL]. (2020-03-02) [2023-06-26]. https://arxiv.org/abs/2003.00688.
[35] 侯廉. 面向自动驾驶应用的周车轨迹群体交互式预测[D]. 北京: 清华大学, 2019.
HOU Lian. Distributed and interactive prediction of future trajectories of surrounding vehicles for autonomous driving. Beijing: Tsinghua University, 2019.
[36] 王少博. 动态场景下基于交互性预测的自动驾驶汽车轨迹规划方法研究[D]. 合肥: 中国科学技术大学, 2020.
WANG Shaobo. Research on interaction-aware predictive trajectory planning for autonomous vehicle in dynamic environments. Hefei: University of Science and Technology of China, 2020.
[37] ZHAN Wei, SUN Liting, WANG Di, et al. Interaction dataset: an international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps[EB/OL]. (2019-10-30) [2023-06-26]. https://arxiv.org/abs/1910.03088.
[38] VAPNIK V N. Statistical learning theory[M]. New York: Wiley, 1998.
[39] GANIN Y , USTINOVA E , AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of machine learning research, 2016, 17(1): 2096-2030.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems