[1]PANG Rong,YANG Yan,LENG Xiongjin,et al.Segmentation model of pavement diseases based on semantic priori of double-branched point flow[J].CAAI Transactions on Intelligent Systems,2024,19(1):153-164.[doi:10.11992/tis.202306037]
Copy

Segmentation model of pavement diseases based on semantic priori of double-branched point flow

References:
[1] “十四五”现代综合交通运输体系发展规划[J]. 铁道技术监督, 2022, 50(2): 9?23, 27.
Development plan of modern comprehensive transportation system in the 14th five-year plan[J]. Railway quality control, 2022, 50(2): 9?23, 27.
[2] The Central People’s Government of the People’s Republic of China, v1.0[EB/OL]. (2023?01?11)[2023?06?15]. http://www.gov.cn/.
[3] 侯越, 张慧婷, 高智伟, 等. 基于数据深度增强的路面病害智能检测方法研究及比较[J]. 北京工业大学学报, 2022, 48(6): 622–634
HOU Yue, ZHANG Huiting, GAO Zhiwei, et al. Research and comparison of intelligent detection methods of pavement distress based on deep data augmentation[J]. Journal of Beijing University of Technology, 2022, 48(6): 622–634
[4] 章世祥, 张汉成, 李西芝, 等. 基于机器视觉的路面裂缝病害多目标识别研究[J]. 公路交通科技, 2021, 38(3): 30–39
ZHANG Shixiang, ZHANG Hancheng, LI Xizhi, et al. Study on multi-objective identification of pavement cracks based on machine vision[J]. Journal of highway and transportation research and development, 2021, 38(3): 30–39
[5] 高建贞, 任明武, 唐振民, 等. 路面裂缝的自动检测与识别[J]. 计算机工程, 2003, 29(2): 149–150
GAO Jianzhen, REN Mingwu, TANG Zhenmin, et al. Automatic road crack detection and identification[J]. Computer engineering, 2003, 29(2): 149–150
[6] 徐威, 唐振民, 吕建勇. 基于图像显著性的路面裂缝检测[J]. 中国图象图形学报, 2013, 18(1): 69–77
XU Wei, TANG Zhenmin, LYU Jianyong. Pavement crack detection based on image saliency[J]. Journal of image and graphics, 2013, 18(1): 69–77
[7] 伯绍波, 闫茂德, 孙国军, 等. 沥青路面裂缝检测图像处理算法研究[J]. 微计算机信息, 2007, 23(15): 280–282
BO Shaobo, YAN Maode, SUN Guojun, et al. Research on crack detection image processing algorithm for asphalt pavement surface[J]. Control & automation, 2007, 23(15): 280–282
[8] SHENG Peng, CHEN Li, TIAN Jing. Learning-based road crack detection using gradient boost decision tree[C]//2018 13th IEEE Conference on Industrial Electronics and Applications. Piscataway: IEEE, 2018: 1228?1232.
[9] SUN Lu, KAMALIARDAKANI M, ZHANG Yongming. Weighted neighborhood pixels segmentation method for automated detection of cracks on pavement surface images[J]. Journal of computing in civil engineering, 2016, 30(2): 04015.
[10] 曹建农, 张昆, 元晨, 等. 用Mean Shift实现路面裂缝损伤自动识别与特征测量[J]. 计算机辅助设计与图形学学报, 2014, 26(9): 1450–1459
CAO Jiannong, ZHANG Kun, YUAN Chen, et al. Automatic road cracks detection and characterization based on mean shift[J]. Journal of computer-aided design & computer graphics, 2014, 26(9): 1450–1459
[11] WANG Yanyan, SONG Kechen, LIU Jie, et al. RENet: rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks[J]. Measurement, 2021, 170: 108698.
[12] YANG Jing, FU Qin, NIE Mingxin. Road crack detection using deep neural network with receptive field block[J]. IOP conference series:materials science and engineering, 2020, 782(4): 042033.
[13] YAO Hui, LIU Yanhao, LI Xin, et al. A detection method for pavement cracks combining object detection and attention mechanism[J]. IEEE transactions on intelligent transportation systems, 2022, 23(11): 22179–22189.
[14] ZHANG Yujia, LI Qianzhong, ZHAO Xiaoguang, et al. TB-net: a three-stream boundary-aware network for fine-grained pavement disease segmentation[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway : IEEE, 2021: 3654?3663.
[15] WU Junxian, ZHANG Yujia, ZHAO Xiaoguang. Multi-task learning for pavement disease segmentation using wavelet transform[C]//2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1?8.
[16] YU Gui, DONG Juming, WANG Yihang, et al. RUC-net: a residual-unet-based convolutional neural network for pixel-level pavement crack segmentation[J]. Sensors, 2022, 23(1): 53.
[17] ZHANG Lei, YANG Fan, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]//2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 3708?3712.
[18] 韩静园, 王育坚, 谭卫雄, 等. 基于FCN的路面裂缝分割算法[J]. 传感器与微系统, 2022, 41(6): 146–149
HAN Jingyuan, WANG Yujian, TAN Weixiong, et al. Pavement crack segmentation algorithm based on FCN[J]. Transducer and microsystem technologies, 2022, 41(6): 146–149
[19] YANG Fan, ZHANG Lei, YU Sijia, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE transactions on intelligent transportation systems, 2020, 21(4): 1525–1535.
[20] 刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6): 1–16
LIU Wenting, LU Xinming. Research progress of transformer based on computer vision[J]. Computer engineering and applications, 2022, 58(6): 1–16
[21] XIE Enze, WANG Wenhai, YU Zhiding, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[EB/OL]. (2021?10?28)[2023?06?15]. https://arxiv.org/abs/2105.15203.pdf.
[22] STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation[C]//2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 7242?7252.
[23] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]// European Conference on Computer Vision. Cham: Springer, 2020: 213?229.
[24] JAIN J, SINGH A, ORLOV N, et al. SeMask: semantically masked transformers for semantic segmentation[C]//2023 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2023: 752?761.
[25] SHEN Zhuoran, ZHANG Mingyuan, ZHAO Haiyu, et al. Efficient attention: attention with linear complexities[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3530?3538.
[26] EL-NOUBY A, TOUVRON H, CARON M, et al. XCiT: cross-covariance image transformers[EB/OL]. (2021?06?18)[2023?05?15]. http://arxiv.org/abs/2106.09681.pdf
[27] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021?07?03)[2023?06?15]. http://arxiv.org/abs/2010.11929.pdf.
[28] YUAN Kun, GUO Shaopeng, LIU Ziwei, et al. Incorporating convolution designs into visual transformers[C]//2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 559?568.
[29] LI Xiangtai, HE Hao, LI Xia, et al. PointFlow: flowing semantics through points for aerial image segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4215?4224.
[30] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNet: criss-cross attention for semantic segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2020: 603?612.
[31] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017?12?05)[2023?06?15]. http://arxiv.org/abs/1706.05587.pdf
[32] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 833?851.
[33] SUN Ke, XIAO Bin, LIU Dong, et al. Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5686?5696.
[34] WU Tianyi, TANG Sheng, ZHANG Rui, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE transactions on image processing, 2021, 30: 1169–1179.
[35] ZHENG Sixiao, LU Jiachen, ZHAO Hengshuang, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6877?6886.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems