[1]XU Yi,ZHANG Jie.Multi-scale decision model based on partition order product space[J].CAAI Transactions on Intelligent Systems,2024,19(6):1528-1538.[doi:10.11992/tis.202306026]
Copy

Multi-scale decision model based on partition order product space

References:
[1] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341-356.
[2] PAWLAK Z, SKOWRON A. Rudiments of rough sets[J]. Information sciences, 2007, 177(1): 3-27.
[3] YAO Jingtao. A ten-year review of granular computing[C]//2007 IEEE International Conference on Granular Computing. Fremont: IEEE, 2007: 734.
[4] WU Weizhi, LEUNG Y. Optimal scale selection for multi-scale decision tables[J]. International journal of approximate reasoning, 2013, 54(8): 1107-1129.
[5] GU Shenming, WU Weizhi. On knowledge acquisition in multi-scale decision systems[J]. International journal of machine learning and cybernetics, 2013, 4(5): 477-486.
[6] WU Weizhi, QIAN Yuhua, LI Tongjun, et al. On rule acquisition in incomplete multi-scale decision tables[J]. Information sciences, 2017, 378: 282-302.
[7] LI Feng, HU Baoqing, WANG Jun. Stepwise optimal scale selection for multi-scale decision tables via attribute significance[J]. Knowledge-based systems, 2017, 129: 4-16.
[8] LI Feng, HU Baoqing. A new approach of optimal scale selection to multi-scale decision tables[J]. Information sciences, 2017, 381: 193-208.
[9] WU Weizhi, LEUNG Y. A comparison study of optimal scale combination selection in generalized multi-scale decision tables[J]. International journal of machine learning and cybernetics, 2020, 11(5): 961-972.
[10] DENG Jiang, ZHAN Jianming, WU Weizhi. A three-way decision methodology to multi-attribute decision-making in multi-scale decision information systems[J]. Information sciences, 2021, 568: 175-198.
[11] ZHAN Jianming, ZHANG Kai, WU Weizhi. An investigation on Wu-Leung multi-scale information systems and multi-expert group decision-making[J]. Expert systems with applications, 2021, 170: 114542.
[12] WU Weizhi, LEUNG Y. Theory and applications of granular labelled partitions in multi-scale decision tables[J]. Information sciences, 2011, 181(18): 3878-3897.
[13] 顾沈明, 顾金燕, 吴伟志, 等. 不完备多粒度决策系统的局部最优粒度选择[J]. 计算机研究与发展, 2017, 54(7): 1500-1509.
GU Shenming, GU Jinyan, WU Weizhi, et al. Local optimal granularity selections in incomplete multi-granular decision systems[J]. Journal of computer research and development, 2017, 54(7): 1500-1509.
[14] 吴伟志, 杨丽, 谭安辉, 等. 广义不完备多粒度标记决策系统的粒度选择[J]. 计算机研究与发展, 2018, 55(6): 1263-1272.
WU Weizhi, YANG Li, TAN Anhui, et al. Granularity selections in generalized incomplete multi-granular labeled decision systems[J]. Journal of computer research and development, 2018, 55(6): 1263-1272.
[15] HUANG Zhehuang, LI Jinjin, DAI Weizhong, et al. Generalized multi-scale decision tables with multi-scale decision attributes[J]. International journal of approximate reasoning, 2019, 115: 194-208.
[16] 宋茂林, 吴伟志. 协调的决策多尺度不完备信息系统的最优尺度选择[J]. 河北师范大学学报(自然科学版), 2022, 46(2): 117-125.
SONG Maolin, WU Weizhi. On optimal scale selection in consistent incomplete multi-scale information systems with multi-scale decisions[J]. Journal of Hebei Normal University (natural science edieion), 2022, 46(2): 117-125.
[17] HAO Chen, LI Jinhai, FAN Min, et al. Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J]. Information sciences, 2017, 415/416: 213-232.
[18] ZHANG Xueqiu, ZHANG Qinghua, CHENG Yunlong, et al. Optimal scale selection by integrating uncertainty and cost-sensitive learning in multi-scale decision tables[J]. International journal of machine learning and cybernetics, 2020, 11(5): 1095-1114.
[19] CHENG Yunlong, ZHANG Qinghua, WANG Guoyin, et al. Optimal scale selection and attribute reduction in multi-scale decision tables based on three-way decision[J]. Information sciences, 2020, 541: 36-59.
[20] WANG Wenjue, HUANG Bing, WANG Tianxing. Optimal scale selection based on multi-scale single-valued neutrosophic decision-theoretic rough set with cost-sensitivity[J]. International journal of approximate reasoning, 2023, 155: 132-144.
[21] 徐怡, 姚一豫. 划分序乘积空间: 基于划分的粒计算模型[J]. 计算机研究与发展, 2019, 56(4): 836-843.
XU Yi, YAO Yiyu. Partition order product space: partition based granular computing model[J]. Journal of computer research and development, 2019, 56(4): 836-843.
[22] 吴伟志. 多粒度粗糙集数据分析研究的回顾与展望[J]. 西北大学学报(自然科学版), 2018, 48(4): 501-512.
WU Weizhi. Reviews and prospects on the study of multi-granularity rough set data analysis[J]. Journal of Northwest University (natural science edition), 2018, 48(4): 501-512.
[23] CATANZARITI F, CHIASELOTTI G, INFUSINO F G, et al. Object similarity measures and Pawlak’s indiscernibility on decision tables[J]. Information sciences, 2020, 539: 104-135.
[24] LIU Fulun, ZHANG Benwen, CIUCCI D, et al. A comparison study of similarity measures for covering-based neighborhood classifiers[J]. Information sciences, 2018, 448/449: 1-17.
[25] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information sciences, 2010, 180(6): 949-970.
[26] QIAN Yuhua, LIANG Jiye, DANG Chuangyin. Incomplete multigranulation rough set[J]. IEEE transactions on systems, man, and cybernetics - part A: systems and humans, 2010, 40(2): 420-431.
[27] XIE Jingjing, HU Baoqing, JIANG Haibo. A novel method to attribute reduction based on weighted neighborhood probabilistic rough sets[J]. International journal of approximate reasoning, 2022, 144: 1-17.
[28] ABDI H, WILLIAMS L J. Principal component analysis[J]. WIREs computational statistics, 2010, 2(4): 433-459. [LinkOut]
[29] POLIKAR R. Ensemble learning[M]//ZHANG Cha, MA Yunqian, eds. Ensemble Machine Learning. New York: Springer New York, 2012: 1-34.
Similar References:

Memo

-

Last Update: 2024-11-05

Copyright © CAAI Transactions on Intelligent Systems