[1]JIN Wei,QIAN Jin,YU Ying,et al.Research on TOPSIS decision-making method based on multi-granularity hesitant fuzzy linguistic term sets[J].CAAI Transactions on Intelligent Systems,2024,19(4):1052-1060.[doi:10.11992/tis.202306015]
Copy

Research on TOPSIS decision-making method based on multi-granularity hesitant fuzzy linguistic term sets

References:
[1] 陈华鹏, 鹿守山, 雷晓燕, 等. 数字孪生研究进展及在铁路智能运维中的应用[J]. 华东交通大学学报, 2021, 38(4): 27–44
CHEN Huapeng, LU Shoushan, LEI Xianyan, et al. Progress of digital twin research and its application in railroad intelligent operation and maintenance[J]. Journal of East China Jiaotong University, 2021, 38(4): 27–44
[2] 李杰, 孟凡熙, 张子辰, 等. 基于融合神经网络的发动机排气温度裕度预测[J]. 华东交通大学学报, 2022, 39(6): 90–97
LI Jie, MENG Fanxi, ZHANG Zichen, et al. Engine exhaust temperature margin prediction based on fusion neural network[J]. Journal of East China Jiaotong University, 2022, 39(6): 90–97
[3] SUN Hong, YANG Zhen, CAI Qiang, et al. An extended exp-TODIM method for multiple attribute decision making based on the Z-Wasserstein distance[J]. Expert systems with applications, 2023, 214: 119114.
[4] 张泓, 范自柱, 石林瑞, 等. 一种基于多尺度特征融合的人头计数检测方法研究[J]. 华东交通大学学报, 2021, 38(2): 115–121
ZHANG Hong, FAN Zizhu, SHI Linrui, et al. Research on a head counting detection method based on multi-scale feature fusion[J]. Journal of East China Jiaotong University, 2021, 38(2): 115–121
[5] 王茜玉.基于多粒度概率语言信息的多属性决策方法及应用研究[D]. 济南:山东财经大学, 2022.
WANG Xiyu. Research on multi-attribute decision-making method and application based on multi-granularity probabilistic linguistic information[D]. Jinan: Shandong University of Finance and Economics, 2022.
[6] RODRIGUEZ R M, MARTINEZ L, HERRERA F. Hesitant fuzzy linguistic term sets for decision making[J]. IEEE transactions on fuzzy systems, 2011, 20(1): 109–119.
[7] HERRERA-VIEDMA E, PALOMARES I, LI C C, et al. Revisiting fuzzy and linguistic decision making: Scenarios and challenges for making wiser decisions in a better way[J]. IEEE transactions on systems, man, and cybernetics:systems, 2020, 51(1): 191–208.
[8] JIN Feifei, GUO Shuyan, CAI Yuhang, et al. 2-tuple linguistic decision-making with consistency adjustment strategy and data envelopment analysis[J]. Engineering applications of artificial intelligence, 2023, 118: 105671.
[9] XUE Siyu, YANG Yang, DENG Xinyang. A novel probabilistic linguistic decision-making model based on discrete evidence fusion and attribute weight optimization[J]. Engineering applications of artificial intelligence, 2023, 125: 106706.
[10] XU Zeshui, XIA Meimei. Distance and similarity measures for hesitant fuzzy sets[J]. Information sciences, 2011, 181(11): 2128–2138.
[11] 许叶军, 达庆利. 基于不同粒度语言判断矩阵的多属性群决策方法[J]. 管理工程学报, 2009(2): 69–73
XU Yejun, DA Qingli. A multi-attribute group decision- making method based on different granularity linguistic judgment matrices[J]. Journal of management engineering, 2009(2): 69–73
[12] CHEN Na, XU Zeshui. Interval-valued hesitant preference relations and their applications to group decision making[J]. Knowledge-based systems, 2013, 37: 528–540.
[13] WEI Guiwu, LIN Rui, WANG Hongjun. Distance and similarity measures for hesitant interval-valued fuzzy sets[J]. Journal of intelligent & fuzzy systems, 2014, 27(1): 19–36.
[14] LI Deqing, ZENG Wenyi, LI Junhong. New distance and similarity measures on hesitant fuzzy sets and their applications in multiple criteria decision making[J]. Engineering applications of artificial intelligence, 2015, 40: 11–16.
[15] LIAO Huchang, XU Zeshui, ZENG XiaoJun. Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making[J]. Information sciences, 2014, 271: 125–142.
[16] RODRíGUEZ R M, LABELLA A, SESMA-SARA M, et al. A cohesion-driven consensus reaching process for large scale group decision making under a hesitant fuzzy linguistic term sets environment[J]. Computers & industrial engineering, 2021, 155: 107158.
[17] LIU Y, RODRíGUEZ R M, QIN J, et al. Type-2 fuzzy envelope of extended hesitant fuzzy linguistic term set: application to multi-criteria group decision making[J]. Computers & industrial engineering, 2022, 169: 108208.
[18] ALI J, AL-KENANI A N. Vector similarity measures of dual hesitant fuzzy linguistic term sets and their applications[J]. Symmetry, 2023, 15(2): 471.
[19] MENG Fanyong, CHEN Xiaohong. A hesitant fuzzy linguistic multi-granularity decision making model based on distance measures[J]. Journal of intelligent & fuzzy systems, 2015, 28(4): 1519–1531.
[20] WU Zhibin, XU Jiuping, JIANG Xianglan, et al. Two MAGDM models based on hesitant fuzzy linguistic term sets with possibility distributions: VIKOR and TOPSIS[J]. Information sciences, 2019, 473: 101–120.
[21] JIN Chenxia, MI Jusheng, LI Fachao, et al. An improved TOPSIS method for multi-criteria decision making based on hesitant fuzzy β neighborhood[J]. Artificial intelligence review, 2023: 1-39.
[22] 陈秀明, 刘业政. 基于熵权的多粒度犹豫模糊语言VIKOR群推荐方法[J]. 控制与决策, 2018, 33(1): 111-118.
CHEN Xiuming, LIU Yezheng. Multi-granular hesitant fuzzy linguistic term sets and their application in group recommendation based on entropy measure and VIKOR method [J] Control and decision, 2018, 33 (1): 111-118.
[23] 于文玉, 仲秋雁, 张震. 权重信息不完全的多粒度犹豫模糊语言群决策[J]. 系统工程理论与实践, 2018, 38(3): 777-785.
YU Wenyu, ZHONG Qiuyan, ZHANG Zhen. Multi- grained hesitation fuzzy linguistic group decision making with incomplete weight information[J]. System engineering theory and practice, 2018, 38 (3): 777-785.
[24] ZHAO Mengke, WU Jian, CAO Mingshuo, et al. A dematel and consensus based MCGDM approach for with multi-granularity hesitant fuzzy linguistic term set[J]. Journal of intelligent & fuzzy systems, 2020, 38(4): 5215–5229.
[25] WANG Juxiang. A MAGDM algorithm with multi-granular probabilistic linguistic information[J]. Symmetry, 2019, 11(2): 127.
[26] ZHANG Zhen, GAO Junliang, GAO Yuan, et al. Two-sided matching decision making with multi-granular hesitant fuzzy linguistic term sets and incomplete criteria weight information[J]. Expert systems with applications, 2021, 168: 114311.
[27] ZHANG Xiaolu, LIAO Huchang, XU Bin, et al. A probabilistic linguistic-based deviation method for multi-expert qualitative decision making with aspirations[J]. Applied soft computing, 2020, 93: 106362.
[28] LI Congcong, GAO Yuan, DONG Yucheng. Managing ignorance elements and personalized individual semantics under incomplete linguistic distribution context in group decision making[J]. Group decision and negotiation, 2021, 30(1): 97–118.
[29] CHEN Z, BEN-ARIEH D. On the fusion of multi-granularity linguistic label sets in group decision making[J]. Computers & industrial engineering, 2006, 51(3): 526–541.
[30] FACCHINETTI G, RICCI R G, MUZZIOLI S. Note on ranking fuzzy triangular numbers[J]. International journal of intelligent systems, 1998, 13(7): 613–622.
[31] WEI Cuiping, LIAO Huchang. A multigranularity linguistic group decision-making method based on hesitant 2-tuple sets[J]. International journal of intelligent systems, 2016, 31(6): 612–634.
[32] 陈余杰, 朱兰萍, 魏翠萍. 多粒度犹豫模糊语言信息融合方法及其在群决策中的应用[J]. 系统科学与数学, 2022, 42(2): 355
Chen Yujie, Zhu Lanping, Wei Cuiping. A fusion method of multi-granular hesitant fuzzy linguistic information and its application in group decision making[J]. Systems science and mathematics, 2022, 42(2): 355
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems