[1]MOU Jianpeng,LIU Wentao,XIONG Weili.Industrial process fault detection based on bidirectional generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2024,19(5):1199-1208.[doi:10.11992/tis.202306011]
Copy

Industrial process fault detection based on bidirectional generative adversarial networks

References:
[1] YIN Shen, YANG Xuebo, KARIMI H R. Data-driven adaptive observer for fault diagnosis[J]. Mathematical problems in engineering, 2012(1): 832-836.
[2] GE Zhiqiang. Review on data-driven modeling and monitoring for plant-wide industrial processes[J]. Chemometrics and intelligent laboratory systems, 2017, 171: 16-25.
[3] JIANG Qingchao, YAN Xuefeng, HUANG Biao. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference[J]. IEEE transactions on industrial electronics, 2016, 63(1): 377-386.
[4] YU Gang. Fault feature extraction using independent component analysis with reference and its application on fault diagnosis of rotating machinery[J]. Neural computing and applications, 2015, 26(1): 187-198.
[5] ZHONG Bin, WANG Jing, ZHOU Jinglin, et al. Quality-related statistical process monitoring method based on global and local partial least-squares projection[J]. Industrial & engineering chemistry research, 2016, 55(6): 1609-1622.
[6] LEE J M, YOO C, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59(1): 223-234.
[7] WANG Kai, CHEN J, SONG Zhihuan. Performance analysis of dynamic PCA for closed-loop process monitoring and its improvement by output oversampling scheme[J]. IEEE transactions on control systems technology, 2019, 27(1): 378-385.
[8] DEWI Y N, RIANA D, MANTORO T. Improving Na?ve Bayes performance in single image pap smear using weighted principal component analysis[C]//2017 International Conference on Computing, Engineering, and Design. Kuala Lumpur: IEEE, 2017: 1-5.
[9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[10] SARATH C A P, LAULY S, LAROCHELLE H, et al. An autoencoder approach to learning bilingual word representations[J]. Advances in neural information processing systems, 2014, 3: 1853-1861.
[11] GOODFELLOW I J, POUGET J, MIRZA M, et al. Generative adversarial networks[J]. Advances in neural information processing systems, 2014, 3: 2672-2680.
[12] 朱晓荣, 张佩佩. 基于GAN的异构无线网络故障检测与诊断算法[J]. 通信学报, 2020, 41(8): 110-119.
ZHU Xiaorong, ZHANG Peipei. Fault detection and diagnosis method for heterogeneous wireless network based on GAN[J]. Journal on communications, 2020, 41(8): 110-119.
[13] 郭俊锋, 王淼生, 孙磊, 等. 基于生成对抗网络的滚动轴承不平衡数据集故障诊断新方法[J]. 计算机集成制造系统, 2022, 28(9): 2825-2835.
GUO Junfeng, WANG Miaosheng, SUN Lei, et al. New method of fault diagnosis for rolling bearing imbalance data set based on generative adversarial network[J]. Computer integrated manufacturing systems, 2022, 28(9): 2825-2835.
[14] YANG Xin, FENG Dajun. Generative adversarial network based anomaly detection on the benchmark Tennessee Eastman process[C]//2019 5th International Conference on Control, Automation and Robotics. Beijing: IEEE, 2019: 644-648.
[15] PATIL R, BIRADAR R, RAVI V, et al. Network traffic anomaly detection using PCA and BiGAN[J]. Internet technology letters, 2022, 5(1): 1-6.
[16] KAPLAN M O, ALPTEKIN S E. An improved BiGAN based approach for anomaly detection[J]. Procedia computer science, 2020, 176: 185-194.
[17] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[18] YU Jianbo, LIU Xing, YE L. Convolutional long short-term memory autoencoder-based feature learning for fault detection in industrial processes[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1-15.
[19] PARK P, DI MARCO P, SHIN H, et al. Fault detection and diagnosis using combined autoencoder and long short-term memory network[J]. Sensors, 2019, 19(21): 4612.
[20] VINCENT D, ISHMAEL B, BEN P, et al. Adversarially learned inference. (2016-06-02)[2023-06-07]. https://arxiv.org/abs/1606.00704.
[21] 潘丙翱. 基于自编码器的高维时间序列异常检测[D]. 杭州: 浙江大学, 2021.
PAN Bing’ao. Journal of chemical engineering anomaly detection of high-dimensional time series based on self-coder[D]. Hangzhou: Zhejiang University, 2021.
[22] GE Zhiqiang, SONG Zhihuan. Distributed PCA model for plant-wide process monitoring[J]. Industrial & engineering chemistry research, 2013, 52(5): 1947-1957.
[23] 宋励嘉, 童楚东. 基于缺失变量估计误差的工业过程监测方法[J]. 高校化学工程学报, 2019, 33(1): 167-173.
SONG Lijia, TONG Chudong. Industrial process monitoring based on estimation error of missing variables[J]. Journal of chemical engineering of Chinese universities, 2019, 33(1): 167-173.
[24] 吴晓东, 熊伟丽. 采用编码输入的生成对抗网络故障检测方法及应用[J]. 智能系统学报, 2022, 17(3): 496-505.
WU Xiaodong, XIONG Weili. Fault detection method and its application using GAN with an encoded input[J]. CAAI transactions on intelligent systems, 2022, 17(3): 496-505.
[25] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: UnSupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event: ACM, 2020: 23-27.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems